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ABSTRACT 

The nonlinear stiffness K(x) and  the reciprocal compliance C(x) of suspension parts (spider, surrounds,  cones) and 

passive radiators (drones) are measured versus displacement x over the full range of operation. A dynamic, 

nondestructive technique is developed which excites the suspension parts pneumatically under similar condition as 

operated in the loudspeaker. The nonlinear parameters are estimated from the measured displacement and sound 

pressure signal. This guarantees highest precision of the results as well as simple handling and short measurement 

time.  

The paper develops the theoretical basis for the new technique but also discusses the practical handling, 

interpretation of the results and  their reproducibility. 

 

1 INTRODUCTION 

Transducers such as loudspeakers, headphones, shakers have a suspension realized by using a surround, spider or the 

diaphragm itself to center and adjust the coil in the gap and to allow a desired displacement of the moving armature. 

The suspension behaves like a mechanical spring characterized by a relationship between restoring force Fk and 

instantaneous displacement x. Only in an ideal suspension we have a linear relationship between force and 

displacement and may characterize the suspension by a single number which is called stiffness K=Fk/x or the inverse 

value compliance C=x/Fk. Due to the geometry of the suspension and the material properties the stiffness K is 

usually not constant but depends on the instantaneous displacement x, time t (frequency f) and the ambient 
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conditions (temperature, humidity). The dependency of K(x) on displacement x is one of the dominant nonlinearities 

in loudspeakers generating substantial distortion for any excitation signal below resonance.  

The EIA standard RS 438 [1 ] describes a method for measuring the stiffness of a spider at a single displacement 

created by hanging a known mass from a cap at the inner diameter of the spider as illustrated in Fig.  1. While this 

method serves a purpose in providing a quickly-obtained estimation of spider stiffness using relatively inexpensive 

equipment, the measurement does not yield any information about the nonlinear behavior of the spider. Furthermore, 

this method may be prone to measurement error due to its highly manual nature. In the meantime additional 

computer controlled methods have been developed that provides the stiffness K(x) versus displacement by using also 

a static technique. Since the stiffness K(x,t) of the suspension depends on displacement x and time t  there are 

discrepancies between static measurement and dynamic application of suspension part: 

 The stiffness K(x) measured statically at peak displacement x=±Xpeak is usually lower than the stiffness 

measured at this point with an audio-like signal. The force that is required for generating a static 

displacement of x=±Xpeak  decreases slowly with time (creep). 

 The  stiffness K(x) measured statically at rest position x ≈ 0 is usually higher than the stiffness found by 

dynamic techniques.     

Furthermore, other practical concerns (reproducibility, practical handling, time) gave reason for the development of 

a new dynamical method which measures suspension parts in the small and large signal domain.  

This paper reports about this work. At the beginning the basic idea and related precursors using pneumatic excitation 

are discussed. Then the acoustics in the test box and the vibration of the suspension part will be modeled and the 

theoretical basis for a new technique developed which can be applied to spiders, cones with surrounds and  passive 

radiators. The implementation, handling and other practical concerns will be discussed in detail later. Finally the 

interpretation of the results and reproducibility will be addressed and conclusions for the loudspeaker design process 

will be presented. 
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Fig.  1: Static measurement of spiders according to standard  RS 438B (1976) 

1.1 Glossary 

C(x) compliance of the suspension part C(x)=1/K(x) 

Ce cost function (squared error) 

Ceff(Xpeak)effective compliance depending on peak displacement Xpeak 

CAB acoustical compliance representing the enclosed air in the test box 

Di  inner diameter of the suspension part 

Do outer diameter of the suspension part (without rim) 

DC smallest diameter of the clamping cone 

e error signal 

Ei complex amplitude of the dc, fundamental and harmonic components of the error signal (i=0,1,… ) 

F total driving force at the inner clamping part 

FK restoring force of the suspension 
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Fi complex amplitude of the dc, fundamental and harmonic components of the restoring force (i=0,1,… 

) 

FD(x)  force representing source of nonlinear distortion generated by suspension part 

Hx(jω) linear transfer function between sound pressure p and displacement x 

H1(jω) ratio of the complex amplitudes of the fundamental displacement and pressure  

HF(jω) linear transfer function between displacement x and total force F 

K(x) mechanical stiffness of suspension part 

j complex operator 1j    

ki coefficients of the power series expansion of K(x) with i=0,1,… 

Keff effective stiffness of the suspension depending on the amplitude X0, X1, … of the displacement  

m moving mass of suspension part and inner clamping part  

ms mass of suspension part 

mc mass of inner clamping part 

MMS total moving mass of a loudspeaker  

N maximal order of power series expansion of K(x) 

p(t) sound pressure in the test box  

Pi complex amplitudes of the dc, fundamental and harmonic components of the sound pressure signal 

(i=0,1,… ) 

pD pressure (pD=pe+pdist) representing the external excitation signal pe and the sound pressure distortion 

pdis generated by the loudspeaker 

p0 static air pressure 

pdis equivalent sound pressure representing the distortion generated by the loudspeaker  

pe equivalent sound pressure representing the external excitation signal 

QMS loss factor considering all non-electrical losses 

QTS Total loss factor considering all electrical, mechanical and acoustical losses in a loudspeaker 
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qD volume velocity generated by the loudspeaker 

qB volume velocity flowing into the enclosure 

qL volume velocity representing the air leakage caused by the box and porosity of the suspension 

qS volume velocity due to the displacement of the suspension (qs=x*SS)  

RMS mechanical resistance representing losses in suspension part and clamping 

RAL acoustical resistance due to air leakage in measurement box and porosity in suspension part 

SD effective area of the loudspeaker cone 

Ss effective area of the suspension part giving the driving force F=SSp for an air pressure p 

Sgeo projected area of the suspension part (without clamping area) 

t time 

T time interval where the parameter identification is made 

x(t) displacement of the inner clamping part connected to the neck of the suspension part 

Xi complex amplitudes of the dc, fundamental and harmonic components of displacement (i=0,1,… ) 

ω angular frequency ω=2πf 

ω0 resonance frequency in the small signal domain where K(x)=k0 

ωR effective resonance frequency in the large signal domain depending on the amplitude of the signal 

ZD acoustical impedance representing the electrical and mechanical properties of the loudspeaker 

 

 

2 BACKGROUND 

The main idea is relatively simple and not new. Some loudspeaker manufacturer use for years a pneumatic 

excitation for suspension parts and measure the resonance frequency of the vibrating suspension. Usually a powerful 

loudspeaker is used for generating a sound pressure signal.  In the AES standard [2] the loudspeaker cone is excited 

in the near field of the loudspeaker which is operated in a small panel as shown in Fig.  2. For the measurement of 
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spiders the loudspeaker has to be placed in a sealed test enclosure to produce sufficient sound pressure. The outer 

rim  (shoulder) of the suspension part (cones or spider) is usually firmly secured by clamping rings.  

 

 

Fig.  2: Dynamic measurement of the lowest resonance frequency of  loudspeaker cones (F) according to standard 

AES19 (1992) using rings (B1 and B2) for clamping the cone rim and an additional loudspeaker (E) for acoustical 

excitation 

Contrary to the known methods this paper suggests that the inner rim (neck) of the suspension is also clamped on a 

moving slide. This increases the moving mass m significantly. The stiffness K(x) and the moving mass m form a 

resonating system. At the resonance frequency the restoring force of the suspension equals the inertia of the mass. 

Due to the additional mass most of inertia acts directly to the neck of the suspension. Thus the suspension is 

operated in a similar way as in a real loudspeaker. 

The new method presented here tests suspension in vertical position to avoid any offset in the displacement due to 

gravity as shown in Fig.  3.  An additional guiding rod for the slide may be used to prevent eccentric deformation of 

the suspension part and to suppress other vibration modes.  
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The nonlinear vibration of the suspension is measured and the unknown stiffness parameters are estimated by 

system identification techniques.  

 

   

suspension 

 loudspeaker 

guiding rod

enclosure 

outer clamping 

 inner clamping 

slide 

 

Fig.  3: Setup of the new measurement technique applied to a spider 

3 THEORY 

To understand some problems observed on existing pneumatic techniques and developing a new method for the 

large signal domain the physical mechanisms have to be investigated more carefully.  

1/
K(x)

R

m

p CAB

qB
qL

RAL

qSqD

SS
F

dx/dt

pD

ZD

 

Fig.  4: Equivalent circuit of the measurement setup 
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3.1 Acoustical Modeling 

Considering the setup in Fig.  3 at low frequencies where the wavelength is large in comparison to the geometry of 

the box the system may be modeled by the lumped parameter model shown in Fig.  4. The loudspeaker generates a 

volume velocity qD  

D B L Sq q q q    (1) 

where the volume velocity qB flows into the volume of the box, qL is leaving the box through leaks and the volume 

velocity qS produces the force F driving the suspension part under test. To get a maximal excitation of the 

suspension part it would be good to keep the leakage of the enclosed air minimal. A loudspeaker with rubber 

surround and aluminum cone gives a good sealing. A minor leakage between the clamping parts, slide and guiding 

rod can not be avoided but the majority of the leakage is caused by porosity of the suspension part under test. The air 

in the capillaries react not as a moving mass but more like a turbulent loss represented by the resistance RAL. It is 

very difficult to quantify the value of  RAL.    

The pressure p in the box generates a force F=SSp on the suspension part using an effective area SS. In case of 

spiders the effective area SS has to be considered as a coupling factor between the acoustical and mechanical domain 

but this value is not identical with the geometrical area Sgeo and very difficult to measure. The porosity of the 

impregnated fabric may cause significant differences between the two areas (Ss < 0.5 Sgeo).  

The acoustical compliance CAB depends on the volume V of the enclosed air and the static air pressure po. However, 

the air volume is not constant but depends also on the shape of the suspension part. For example a large cone may 

change the effective air volume by 5 % and more.   

The loudspeaker used for pneumatic excitation is modeled by an acoustical impedance ZD and a pressure source pD. 

The pressure source comprises a sound pressure component pe generated by the electrical input of the loudspeaker 

and an equivalent pressure pdis which represents the distortion generated by the loudspeaker. However, using a 

loudspeaker with an extremely linear design (long coil, symmetrical suspension) the distortion pdis are relatively 

small. 
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The clamped suspension is described by the displacement x of the inner clamping part and the driving force F=Ssp 

which is related to the sound pressure p in the test box. The driving force  

2

2

),()(
dt

xd
m

dt

dx
vxRxxKpSF MSS   

(2) 

is the sum of the restoring force K(x)x of the suspension, the force RMS dx/dt overcoming the friction of the guiding 

elements and the losses in the suspension material and the inertia accelerating the mass m.   

Not only the stiffness K(x) depends on the instantaneous displacement but also the resistance RMS(x,v) depends on 

the velocity and displacement. At small amplitudes adhesive friction of the slide on the rod may cause a large 

nonlinearity.  

The moving mass m can be approximated by the total mass of suspension and the inner clamping parts  

s cm m m  . (3) 

This approximation neglects the outer rim of the suspension which is firmly clamped during the measurement and 

does not contribute to the moving mass. However, the mass mc dominates the total mass m and the error is in the 

order of 1 %. For the same reason the moving air can be neglected. The moving mass m can easily be determined by 

weighting the suspension with inner clamping part.  

3.2 Measurement of State Variables 

The identification of the parameter K(x) requires measurement of some state variables such as force, displacement or 

pressure in the system.  

The measurement of the displacement x may be accomplished by a relatively inexpensive Laser sensor based on the 

triangulation principle. Careful calibration allows to measure the displacement with an accuracy of  about 1 %.  

A direct measurement of the total driving force F is difficult because an integration over the Ss is required. The 

sound pressure p inside the box can easily be measured but the product F=Ssp can not be calculated because the 

effective area Ss of the suspension is usually not known.  
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The restoring force FK=K(x)x may be measured at the neck of the suspension at dc or at very low frequencies by 

using a simple force sensor. However, at higher frequencies also inertia and internal losses of the suspension part 

contribute to the force at the neck.  

 

3.3 Small Signal Behavior 

A sinusoidal sound pressure signal  

 1( ) j tp t P j e   (4) 

produces a sinusoidal displacement  

 1( ) j tx t X j e   (5) 

as long as the amplitude of the displacement is sufficiently small (  X1 ≈ 0 ) to ensure that the stiffness K(x) = ko and 

resistance RMS are constant and the system behaves linearly. The transfer function between sound pressure and 

displacement   

   
 

1
2

1 0

s
x

X j S
H j

P j k j R m




  
 

 
 

(6) 

has a low-pass characteristic as shown as a thick line in Fig.  5. 
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Fig.  5: Magnitude response of the sound pressure P(f) (dashed line), displacement X(f) (dotted line) and the transfer 

function Hx(f)=X(f)/P(f) (thick solid line) of a 6 inch cone.  

At the resonance frequency ω=ωo with 

0
0

k

m
   

(7) 

the restoring force of the suspension equals the inertia expressed by  

2

2
( ) 0o

d x
k x t m

dt
   . 

(8) 

Since the losses of the suspension part and the friction of the clamping parts sliding on the rod are usually small, the 

transfer function Hx(jω) has a distinct maximum at resonance as depicted in Fig.  5. 

The size of the  peak corresponds with the loss factor  

)0(

)( 00

x

x

MS
MS H

jH

R

m
Q


  

(9) 

which is usually high (QMS > 2) and describes the ratio of the magnitude of Hx(jω) at resonance and at very low 

frequencies. 



Klippel  
 

Measurement of Suspension Parts 

 

 12

The shape of the transfer function Hx(jω) is very similar for all kinds of suspension parts. For example, Fig. 5 – 7 

show the magnitude response |Hx(f)| for a 6 inch cone  (with surround),  a large 18 inch cone (with surround) and a 4 

inch spider, respectively. However, the magnitude responses of the sound pressure |P(f)| and displacement |X(f)| 

differ significantly in all three cases. For the medium sized cone in Fig.  5 the displacement response (dotted curve) 

has a maximum and the sound pressure response (dashed curve) has a distinct minimum at the resonance. In this 

case the total acoustical  impedance of the mechanical resonator (comprising K(x), RMS and m) is in the same order 

of magnitude as the impedance of the acoustical elements (comprising CAB and RL). Since both impedances are 

connected in parallel the total volume velocity qD generated by the loudspeaker splits into two parts having almost 

the same size at resonance where qS flows into the mechanical resonator and the qB+qL into the box and leaks.  

 

10 20 

dB 

Frequency [Hz] 

-30 

-20 

-10 

0 

10 

Hx(f) 
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Fig.  6: Magnitude  response of the sound pressure P(f) (dashed line), displacement X(f) (dotted line) and the transfer 

function Hx(f)=X(f)/P(f) (thick solid line)  of a 18 inch cone. 

For a larger diameter of the suspension the acoustical impedance of the mechanical resonator becomes smaller with 

1/SS
2. Thus, for the 18 inch cone the acoustical impedance of the resonator at resonance is much smaller than the 

impedance of the acoustical elements and almost the complete volume velocity of the loudspeaker flows into the 

mechanical resonator (qD ≈ qS). The acoustical impedance of the mechanical resonator becomes also much lower 

than the acoustical impedance |ZD| of the loudspeaker. Thus the volume velocity qD is almost independent of the 

mechanical resonator and the displacement response |X(f)| depicted as dotted line in Fig.  6 has no resonance peak. 
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Only the sound pressure response |P(f)| depicted as dashed line has a distinct minimum at resonance revealing the 

effect of the resonator.  
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Fig.  7: Magnitude response of the sound pressure P(f) (dashed line), displacement X(f) (dotted line) and the transfer 

function Hx(f)=X(f)/P(f) (thick solid line)  of a 4 inch spider.  

Suspension parts with a small effective area SS such as the 4 inch spider lead to the opposite case. Here the 

acoustical impedance of the mechanical resonator is relatively high (due to the transformation into acoustical 

elements with 1/SS
2) and the acoustical compliance CAB and the resistance RL is much lower. This keeps the sound 

pressure response |P(f)| shown as dashed line in Fig.  7 constant at resonance. Only the displacement response |X(f)| 

depicted as dotted line reveals the effect of the mechanical resonator. 

These examples show that the detection of the resonance for any kind of suspension part can not be accomplished by 

performing a single acoustical measurement of sound pressure p or a single mechanical measurement of 

displacement x but requires in general a combination of both measurements and the calculation of the transfer 

response Hx(jω). 
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Fig.  8: Generation and propagation of harmonic distortion in the test set up 

3.4 Large Signal Behavior 

At higher amplitudes the varying stiffness K(x) generates a nonlinear vibration behavior of the suspension. For a 

sinusoidal excitation voltage the sound pressure signal in the enclosure is 

2 3
1 2 3( ) ...j t j t j tp t Pe P e Pe       (10) 

and displacement of the inner rim of the suspension part 

2 3
0 1 2 3( ) ...j t j t j tx t X X e X e X e        (11) 

comprises a dc component X0, a fundamental component X1,and  P1 and harmonics Xi and Pi, respectively, at 

frequencies iω with the order i > 1. 

To make this complicated mechanism more transparent the restoring force FK(t) is spitted into a  linear and a 

nonlinear part 

 (0) ( ) (0) ( ) (0)K DF K x F x K x K x K x     . (12) 
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The linear term in Equation (12) uses the constant stiffness K(0) while the nonlinear term represents the variations of 

the stiffness only. This term may be considered as a new source supplying distortion FD(x) into the equivalent circuit 

shown in Fig.  8. 

Hx(j)
x(t)p(t)

K(x)-K(0)
FD(t)1/SS

-

 

Fig.  9: Large signal model of the suspension part 

Inserting Equation (12) into Equation (2) The transfer of the FD to the displacement x can be modeled by the signal 

flow chart depicted in Fig.  9. The varying part K(x)-K(0) of the stiffness represented as a static nonlinearity (without 

any memory) generates the distortion force FD which is transformed into a sound pressure component by the 

effective area SS of the suspension and subtracted from the pressure in the test enclosure. The total pressure is 

transformed via the linear transfer function Hx(jω) in Equation (6) into the displacement signal x(t).  

The nonlinear force FD generates not only a dc component and harmonics but also a component at the fundamental 

frequency ω. This fundamental distortion component has a significant effect on the behavior of the system at 

resonance because the feed-back loop in Fig.  9 has a high gain due to the loss factor (QMS > 2) of Hx(jω). 
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Fig.  10: Amplitude response of the displacement while increasing the excitation amplitude by 6 dB 
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For example, Fig.  10 shows the amplitude response of the fundamental displacement component X1 where the 

excitation amplitude is increased by 6 dB increments. At small amplitudes the curve has an almost symmetrical 

resonance peak but becomes more and more asymmetrical at higher amplitudes. The resonance peak is also shifted 

to higher frequencies at large amplitudes.    

For sinusoidal excitation the complex ratio H1(jω) of the fundamentals X1 and P1 in the displacement and sound 

pressure spectrum, respectively, may be expressed as 

1
1 2

1

( )
( )

( ) ( )
s

eff peak

SX j
H j

P j K X j R m


  

 
 

 (13) 

using the effective stiffness Keff  which depends on the stiffness characteristic K(x) and the peak displacement Xpeak. 

At a particular frequency  

( )
( ) eff peak

R peak

K X
X

m
   

(14) 

the real part  

2( ) 0eff peak RK X m   (15) 

in Equation (13) vanishes and  |H1(jω)| becomes maximal if the mechanical losses represented by resistance RMS are 

sufficiently small.  

The frequency ωR may be understood as a large signal resonance frequency depending on the peak displacement 

Xpeak in contrast to the (small signal)  resonance frequency which is a constant value ω0 in the linear model. Due to 

the low losses in the suspension and the high loss factor (QMS >2) the large signal resonance frequency may also be 

detected by searching for the maximum in |H1(jω)|. 

However, driving the system into resonance is not so trivial at high amplitudes as in the small signal domain. Since 

the effective stiffness usually increases with peak displacement Xpeak the large signal resonance frequency ωR is 

usually much higher than the small signal resonance ω0. Performing  a sinusoidal sweep with falling frequency leads 
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to a maximum at much smaller frequencies than sweeping with rising frequency. The reason for this phenomenon is 

illustrated in Fig.  11. Due to the displacement depending resonance ωR(Xpeak) and the high QMS there is a bifurcation 

into three states on the right side of the backbone curve whereas only two states are stable.     
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unstable state

 

Fig.  11: Amplitude response of displacement at high amplitudes measured with a sinusoidal sweep with rising and 

falling frequency.  

Performing a sweep with rising frequency started one third-octave below the large signal resonance usually leads the 

nonlinear resonator into the upper state and the  large signal resonance ωR(Xpeak) can be found where the ratio 

|H1(jω)| between the fundamentals becomes maximal. Performing a sweep with falling frequencies the system 

usually uses the path via the lower states and the system actually misses the large signal resonance. A similar result 

may be obtained by exciting the suspension with a fixed frequency at ωR by increasing the excitation amplitude 

slowly. The resonator remains in the lower state and finally at very high excitation or by any perturbation (a manual 

kick giving to the suspension) the resonator jumps into the upper state which is usually below resonance. 

3.5 Identification of the Parameters 

With the knowledge about the physics of the acoustical system a dynamical measurement technique will be 

developed here.  

As said before the main idea is to realize with an appropriate inner clamping of the suspension part a clear defined 

moving mass and to operate the suspension in the resonance. Since the losses in the suspension are small and the Q-

factor is usually high the resonance can easily be detected by searching for a distinct maximum in the ratio |H1(jω)|. 
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Operating the suspension part in the resonance has also the benefit that a small box pressure generated by the 

loudspeaker gives maximal displacement of the suspension.   

The next point is that the suspension is excited by a sweep signal starting at least one-third octave below resonance 

ending approximately one-third octave above resonance.  The displacement of the inner clamping parts and the 

sound pressure in the box is measured by sensors (laser triangulation sensor and microphone inside the box) and 

provided as time signals to the signal processing.  For the measurement of spiders and smaller sized cones the sound 

pressure measurement may be omitted as discussed in detail below. 
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Fig.  12: Voice coil displacement of an asymmetric suspension (spider) while sweeping over the resonance 

frequency 

For example, Fig.  12 shows the recorded displacement signal where the characteristic decay of the amplitude above 

resonance is clearly visible.  

Searching for a maximum in the displacement pressure ratio |H1(jω)| leads to the effective resonance frequency ωR 

if the loss factor QMS is greater than 2. The loss factor should always be checked to get an indication for bad 

clamping of the suspension and possible excessive friction at the slide on the guiding rod. 

3.5.1 Effective Stiffness Keff 

Knowing the effective resonance frequency ωR and the moving mass m the effective stiffness  

2( )eff peak RK X m  (16) 
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or 

the effective compliance 

2

1
( )eff peak

R

C X
m

  
(17) 

are calculated. Since the resonance frequency ωR depends on the amplitude of the displacement, the effective 

stiffness should also be understood as a function of the displacement Xpeak.  

The measurement of the effective stiffness can be accomplished with straightforward measurement equipment. 

3.5.2 Nonlinear Stiffness K(x) 

More detailed information about the properties of the suspension give the displacement varying stiffness K(x). The 

curve can be calculated from the harmonic distortion found in the sound pressure and displacement  signal. For 

example Fig.  13 shows the spectrum of one period of the displacement time signal located at the maximum in Fig.  

12. 
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Fig.  13: Spectrum of one period of the displacement at resonance frequency ωR=15 Hz  generated by sinusoidal 

excitation  

The spectrum in Fig.  13 comprises a fundamental, a dc component, a 2nd-order and 3rd-order components which are 

clearly above the noise floor. The dc-component is generated dynamically by the asymmetry of the stiffness and 

depends also on the amplitude. The dc component is also visible in Fig.  12. At the beginning of the measurement 
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the displacement is almost symmetrical but becomes asymmetrical at higher amplitudes. The bottom value (-17 mm) 

is at  resonance ωR  much lower than the  peak value (+11 mm) which gives the raise of the even-order harmonics. 

The balance of the forces in the mechanical resonator expressed in equation (2) is the basis for the identification of 

the nonlinear stiffness. Considering measured displacement and sound pressure signals corrupted by noise and 

calibration errors the ideal Equation (2) is written as the model error equation 

pS
dt

xd
m

dt

dx
RxxKe SMS 

2

2

)( . 
(18) 

The shape of the nonlinear K(x) characteristic is estimated by straightforward optimization where the squared error  

in the cost function  

2

0

1
( )

T

eC e t dt Minimum
T

   
(19) 

is minimized over a certain time interval T. To search between a wide variety of candidates for the curve shape, K(x) 

is expressed by a truncated power series expansion 

0

( )
N

i
i

i

K x k x


 . 
(20) 

Since there is a linear relationship between the unknown coefficients ki (i=0,1, … N) and the error signal e(t) the 

coefficients can be estimated by searching for the minimum in the cost function in a (N+1)-dimensional space by 

solving a linear set of equations   

0e
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C

k





. 

(21) 

The error equation (18) still requires precise values for the additional parameters moving mass m, mechanical 

resistance RMS and effective area Ss. While the moving mass m can easily be measured by weighting the suspension 

part with inner clamping, the resistance RMS and effective area SS can not be measured directly.  
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This problem can be solved by using a modified error equation (25) developed as a Two Signal Method in the 

appendix. The driving force F is not described by the unknown effective area SS but is estimated by the measured 

transfer function Hx(jω) between sound pressure p in the test box and the displacement signal x. Here values of 

Hx(jω) at frequencies above the large signal resonance ωR are required. This measurement can be easily performed 

by a first pre-measurement using a wide-band sweep. The amplitude of the stimulus is not critical because 

Hx(jω)≈H1(jω) for ω > ωR. 

This technique puts minimal requirements on the microphone used and still works if the microphone is not 

calibrated and has a poor amplitude response. Also the position of the microphone inside the box and any time delay 

in the measurement path is not critical as long as the same position is used in the pre- and  main-measurement. 

However, the microphone should behave linearly at the sound pressure amplitudes occurring in the test enclosure. 

The laser displacement sensor should be calibrated carefully. 

For spiders and smaller sized cones the sound pressure measurement can be omitted and the simple One Signal 

Method developed in the appendix may be used. If the acoustical compliance of the test box is large in comparison 

to the compliance of the suspension part, then a simplified error equation (38) developed in the appendix can be 

used. A simple but reliable criteria for the validity of this method is the distinctness of the resonance peak found in 

the displacement frequency response |X(f)|. For example the displacement response |X(f)| of the 6 inch cone in Fig.  

5 and the 4 inch spider in Fig.  7 show a distinct maximum in the displacement. However, the resonance of the large 

18” cone leads to a sound pressure minimum and is almost not detectable in the displacement signal. Suspension 

parts with a large area Ss should always be measured by using the Two Signal Method. 

3.5.3 Resistance RMS 

In the small signal domain the suspension with inner clamping may be measured without using a guiding rod.  

According  to Equation (9) the resistance  

)(

)0(

0
0
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H
m
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m
R

x

x

MS
MS   

(22) 
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may be calculated by using the known mass m, the resonance frequency ωo and  the measured transfer function 

Hx(jω). Measurements at high amplitudes require some guidance of the inner clamping part and the friction 

contributes to the measured resistance RMS and the losses of the suspension can not be measured separately. 

However, the suspension losses have only a small impact on the final loudspeaker performance for two reasons: 

 The flow resistance of the air passing the voice coil in the gap contributes significantly to the total 

mechanical QMS.  

 In a voltage driven loudspeaker system the electrical damping dominates the total loss factor QTS .  

4 PRACTICAL USAGE 

After developing the theoretical basis of the dynamic measurement technique the implementation and practical 

handling is shortly addressed.  

  

4.1 Hardware Requirements 

The following hardware components are required to realize the One Signal Method: 

4.1.1 Measurement box with excitation loudspeaker  

The box should be as large as possible to make the compliance CAS/SD
2 large and to provide a constant excitation 

force for the mechanical resonator in Equation (2). The loudspeaker used for pneumatic excitation should be an 18 

inch woofer with sufficient Xmax providing sufficient air flow.  

4.1.2 Inner Clamping Tool 

The suspension part should be clamped during the dynamic testing in a similar way as mounted in the final 

loudspeaker.  
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If destructive testing is applicable the suspension part can be glued to original loudspeaker parts (voice coil former, 

frame)  which can more easily be mounted in the measurement box.  

A nondestructive testing is preferred for comparing samples, storing reference units and for simplifying the 

communication between manufacturer and customer. 

Since most of the suspension parts have an axial-symmetrical shape they can be clamped by a universal clamping set 

comprising a minimal number of clamping parts (cups and cones).   

If the nonlinear stiffness of the suspension part shall be measured in the large signal domain additional guidance of 

the inner clamping part is required. This can be realized by using a sleeve sliding at low friction on a high polished 

center rod. The suspension has to be clamped on the slide in such a way that the outer rim of the suspension is in the 

middle of the slide. For a very asymmetric suspension parts such as a loudspeaker cone an additional mass may be 

added on the other side to ensure that the center of gravity is also in the middle of the slide as illustrated in Fig.  14.  

This reduces tilting of the suspension, irregular vibration and ensures minimal friction at the rod. 

added mass

 suspension

slide

centre of
gravity

cup

cone

 

Fig.  14: Optimal inner clamping of a suspension having an asymmetrical geometry (loudspeaker cone) 



Klippel  
 

Measurement of Suspension Parts 

 

 24

4.1.3 Scale  

Finally the weight of the suspension with inner clamping parts is measured and provided to the post processing 

software. 

 

DO

upper ring 

 lower rings 

suspension 

B3 B5 B4 

C3 

DR

DR

 

Fig.  15: Outer clamping of the suspension using a universal ring set 

4.1.4 Outer Clamping Tools 

The outer clamping of axial-symmetrical suspension parts can be realized by using a set of rings as illustrated in Fig.  

15. Knowing the outer dimension DO of the suspension the lower ring (for example B3) is selected from a look up 

table. As illustrated in Fig.  15 the outer diameter DO should be just smaller than the ring diameter DR.  The free 

space in the opening of the measurement box is closed by other rings which have the same character in the 

nomenclature (B) and are larger than the lower clamping ring (B4, B5, B6). Finally the next larger ring (C3) is used 

as upper clamping ring because it provides a rim with the same diameter DR on the opposite side. 

4.1.5 Laser Displacement Sensor  

A laser sensor is used to measure the displacement of the inner clamping part.  

 

4.2 Performing the measurement 

The measurement is performed in two steps: 
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4.2.1 Pre Measurement 

A first measurement performs a wide band sweep (from 5 Hz to 100 Hz) to measure the transfer function H1(jω) in 

the case of the Two Signal Method or just the amplitude response X(jω) for the One Signal Method as shown in Fig.  

5. This data is used to find the resonance frequency and calculates optimal setup parameter.  

4.2.2 Main measurement 

The main measurement performs a narrow band sweep starting one-third octave below the mechanical resonance 

and ending just after the jumping effect above the resonance. For the 4 inch spider the measured displacement x(t) is 

shown in Fig.  12. If the peak displacement does not meet the target value specified by the user the main 

measurement is repeated after adjusting the voltage of the stimulus. By using an automatic voltage control a 

complete measurement can be accomplished in less than a few minutes. 
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Fig.  16: Nonlinear stiffness K(x) (solid line) and effective stiffness Keff (dashed line) of a cup spider 
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x 

  

Fig.  17: Cross sectional view of a cup spider  

5 INTERPRETATION 

5.1  Nonlinear Stiffness K(x) 

Fig.  16 shows the stiffness characteristic K(x) versus voice coil displacement of a cup spider having a geometry as 

illustrated in Fig.  17. For a positive displacement x=+11 mm the stiffness value is approximately 30 times higher 

than at the rest position x=0. The stiffness characteristic has also a distinct asymmetry. At negative displacement x=-

11 mm the stiffness is only 16 % of value found at positive displacement x=+11 mm. Such an asymmetrical stiffness 

is directly related with the typical geometry of a cup spider because the outer rolls provide less stiffness for radial 

force and move to the center especially for a negative deflection. However, the asymmetry of the outer rim 

(shoulder) can be compensated by the size, geometry of the inner corrugation role which has also an inherent 

asymmetry.  This is also the reason why a plane spiders may show an asymmetrical stiffness if the number of 

corrugation rolls is low and the shape of the inner (half) roll and inner rim are not optimal.  

However, any asymmetry in the K(x)-characteristic causes a partial rectification of the ac-signal and generates a dc-

component always to the softer side of the suspension. The cup spider measured in Fig.  17 may produce a dynamic 

voice coil offset of - 3 mm. 
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Fig.  18: Nonlinear stiffness K(x) (solid line) and effective stiffness Keff (dashed line) of a cone with surround. 

 

Fig.  18 shows the nonlinear stiffness K(x) as a solid line of a cone with a surround having a half roll as illustrated in 

Fig.  14. For such kinds of suspension parts the stiffness characteristic has an almost constant plateau at low and 

medium displacement but rises rapidly at higher values where the displacement is not small compared with the 

diameter of the half roll.  The asymmetrical geometry inherent in most surrounds cause also an asymmetry in the 

stiffness.  

 

5.2 Effective Stiffness   

The dashed curve in Fig.  16 shows the effective stiffness Keff of the suspension in the working range (-17< x < +11).  
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Fig.  19: Effective Stiffness Keff(Xpeak) depending on the amplitude of displacement 

The effective stiffness Keff(Xpeak) depends on the maximal peak displacement Xpeak occurred during measurement. 

Fig.  19 shows the variation of the effective stiffness of a 3 inch spider measured with slowly increased voltage from 

4 to 10 V at the terminals of the loudspeaker. The substantial variations at higher amplitudes are mainly caused by 

the nonlinear increase of the stiffness at higher displacement.  

To ensure comparability of the results the peak displacement Xpeak should be stated for which the effective stiffness  

Keff(Xeak) is valid such as   

Keff=0.4 Nmm-1  @ Xpeak=17 mm.  

This value is simple to interpret and corresponds directly with the resonance frequency ωR and the moving mass m. 

It is a single-number representation of K(x) which may be sufficient and convenient for QC applications.   
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Fig.  20: Nonlinear compliance C(x) of a cup spider corresponding to the nonlinear stiffness in Fig.  16 

 

5.3 Compliance C(x) 

The compliance C(x) is just the inverse of the stiffness K(x). For the 4 inch spider Fig.  20 shows a bell-shaped curve 

which corresponds with the parabola found in the K(x) characteristic in Fig.  16.  However, the stiffness curve 

reveals details of the nonlinearity clearer than the compliance curve and is better suited for graphical representation. 

6 IRREGULAR SUSPENSION BEHAVIOR 

Suspension parts are usually made out of impregnated cloth, paper, foam and rubber having properties which vary 

with time (breaking in, creep, aging) and  depend on the ambient conditions (temperature, humidity). Some of the 

variations are irreversible (breaking in) but other processes are reversible after a certain time constant.   

The new dynamic measurement technique developed here gives new insight into those complicated mechanisms:   
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Fig.  21: Nonlinear stiffness of a plan spider as a function of the amplitude 

6.1 Reversible Variations 

Fig.  21 shows the nonlinear stiffness K(x) measured with different amplitudes of the excitation signals.  Whereas 

the curves at positive and negative peak values Xpeak almost coincide there is a significant decrease of stiffness 

K(x=0) at the rest position x=0. This is not an artifact of the measurement but a typical property of the material. The 

same behavior has been observed in final loudspeaker using other static, quasi-static or dynamic methods [4 ], [5 ], 

[6 ]. At small signal amplitudes this effect dominants the increase of the stiffness at the positive and negative peak 

value. Thus the effective stiffness Keff(Xpeak) and resonance frequency ωR(Xpeak)  fall with rising peak displacement. 

This irregular behavior is also the reason in the decreasing resonance frequency in Fig.  10 for  Xpeak  <  2mm.  

A simple explanation for this phenomenon is that stretching of the corrugation rolls at high amplitudes causes a 

temporary deformation of the fiber structure and makes the suspension softer between the positive and negative peak 

values. The spider in Fig.  21 for example loses temporarily almost all the stiffness at the rest position just after 

performing a peak to peak displacement of 40 mm. This kind of deformation stays only for a short time constant 

(multiple periods of the ac signal) and recovers completely after a few seconds. This is an reversible process which 

depends on the geometry and impregnation of the suspension material. It increases the nonlinearity of the suspension 

which becomes not only stiffer for larger displacement but also softer between the excursion maxima. 
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Fig.  22: Variation of the nonlinear stiffness K(x) of a cup spider during long term testing of a spider (measured in 

15 min intervals)  

6.2 Irreversible Changes  

The dynamic measurement technique is also convenient for the investigation of the break in and other ageing effects 

of the suspension. The example in Fig.  22 shows the change of the stiffness versus measurement time. The spider 

under test is permanently excited with an audio-like test signal and measurements are taken after 15 min intervals. It 

is interesting to see that the stiffness at higher displacements stays constant but the stiffness at the rest position x=0 

is reduced down to 30 %. Thus the stiffness at high positive and negative displacement is closely related with the 

geometry of the suspension while the stiffness at rest position is mainly determined of the impregnation and 

thickness of the material. 

7 REPRODUCIBILITY 

The reproducibility and repeatability of the new measurement technique has been investigated systematically. A 

series of test has been performed on a variety of different suspension parts to assess the influence of the following 

factors: 

 clamping the suspension part 
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 additional mass of the inner clamping parts 

 influence of the stimulus 

 maximal order N of the power series expansion used for K(x) 

 uncontrolled variables (other nonlinearities in the measurement setup) 

At first the repeatability of the measurement technique has been tested on suspension parts without changing the 

clamping and the setup. The results are very reproducible ( < 1%). If the measurement were repeated more than 10 

times, the stiffness x=0 has the tendency to decrease to lower values systematically. This effect can be reduced by 

exposing test objects before measurement to a break-in procedure (5 min vibration at resonance).  

The outer clamping has a minor influence on the measurement results. Even operating faults such as using rings 

which are too small or are not applied concentrically cause relatively small errors.  

The inner clamping is much more critical. Some care is required to ensure that the friction of the slide on the rod is 

small, the displacement of the inner corrugation roles is not limited by the inner clamping parts. The center of 

gravity and the outer clamping plane should be approximately in the middle of the slide. If the friction is too high 

giving a low QMS of the resonator, then the maximum of the transfer function Hx(jω) occurs below resonance 

frequency giving a smaller estimate of the stiffness.  
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Fig.  23: Effective (mean) stiffness Keff measured on a spider at different amplitudes (excitation voltages 4V, 5V, 7 

V and 10V) and with two different masses 297 gram (dashed line) and 327 gram (solid line). 

 

0,0 

0,5 

1,0 

1,5 

2,0 

2,5 

3,0 

-20 -15 -10 -5 0 5 10 15 20

 
 [N/mm] 

Displacement    x           [mm] 

Voltage increase

 

Fig.  24: Stiffness K(x) versus displacement x of a spider measured with different amplitudes (excitation voltages 

4V, 5V, 7 V and 10V) and with two different masses 297 gram (dashed line) and 327 gram (solid line). 

The influence of the additional mass mc provided by the inner clamping parts has also been investigated. The higher 

the additional mass the lower the resonance frequency of the resonator. At lower frequencies time reversible 

processes in the suspension become more dominant and the fibers in the suspension have enough time to change 

their position. This reduces the effective stiffness to lower frequencies as described by Knudsen [7 ]. It also explains 

why the stiffness measured statically is usually lower than measured dynamically at higher frequencies.  

Fig.  23 shows the effective stiffness Keff(Xpeak) measured at four amplitudes for two different masses represented as 

dashed and solid lines. Fig.  24 shows the influence of the mass variation in the corresponding K(x) curves measured 

at the same amplitudes. The variations caused by amplitude variation are much higher than the influence of the 

moving mass.    

The influence of the stimulus is small as long as the starting frequency is set at least one-third octave below the large 

signal resonance to ensure that the nonlinear resonator passes the upper vibrating state.  

Finally the order N used in the power series expansion of K(x) has a large influence on the shape of the measured 

K(x) curve. Depending on the signal to noise ratio in the displacement measurement the order N has to be limited 
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(N<5). The SPM software provides an automatic determination of the maximal order N according to the noise floor. 

To compare curves from different measurements it is recommended to use fittings of the same order N.  

8 CONCLUSION 

A new technique for measuring the most important mechanical properties of suspension parts (cones with surround, 

spiders) is presented which also reveals the nonlinear characteristic in the full working range.  

The stiffness K(x) displayed versus displacement x is the most important parameter for suspension parts. The inverse 

parameter compliance C(x) gives no additional information but shows the nonlinear characteristic at higher 

amplitudes not so clearly as the K(x). The effective stiffness Keff(Xpeak) or compliance Ceff(Xpeak)  are integral 

measures of the corresponding nonlinear parameters K(x) and C(x) in the used working range defined by the peak 

value Xpeak. The effective parameters are directly related with the resonance frequency and may be measured with 

conventional equipment. However, the effective parameters can only be compared if the  measurement are made at 

the same peak displacement Xpeak.  

The nonlinear stiffness K(x) or compliance C(x) reveal the causes of the nonlinear signal distortion generated by the 

suspension. This parameter together with parameters of the motor such as force factor Bl(x), inductance L(x)) are the 

basis for numerical prediction of the loudspeaker behavior at high amplitudes. Thus the maximal output and the 

generation of harmonic and intermodulation distortion can be simulated. For example, a symmetrical increase of the 

stiffness K(x) versus positive and negative excursions generates third-order and other odd-order distortion, limits the 

maximal displacement. A symmetrical increases of stiffness is desirable to some extent and provides natural 

protection of the voice coil from hitting the back-plate. Asymmetries should always be avoided. They generate not 

only 2nd- and higher order distortion but also generate a dc displacement which shift the coil dynamically away from 

the optimal rest position and are the cause for instabilities [3].  

The pneumatic excitation of the suspension part allows a dynamic measurement of the suspension part vibrating at 

frequencies at the lower limit of the audio band. Thus, memory effects of the suspension (frequency depending 

stiffness K(f), creep and dependency of K(x=0) on Xpeak) occur almost in the same way as in the final loudspeaker.  
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The usage of an additional mass clamped to the neck of the suspension increases the precision of the calculated 

stiffness because the uncertainty of the moving mass m can significantly reduced.  

The operation of the suspension part in vertical position is not only mandatory due to the additional mass but also 

important for larger cones where the weight of the cone material itself causes a significant offset in displacement 

giving a higher stiffness value if measured in horizontal position.   

The technique may not only be applied to all kinds of suspension parts but can also be used for passive radiators 

(drones). The moving mass m is equal to Mms which may be estimated by the straightforward techniques (added 

mass method performed at low amplitudes).   

Exploiting modern signal processing and identification techniques in combination with pneumatic excitation leads to 

a new measurement which provides not only repeatable and reproducible results but is also very fast,  robust and 

simple to use.   
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10 APPENDIX 

10.1 Two Signal Method 

Substituting in Equation (18) the unknown parameter SS by the measured small signal transfer function Hx(jω) 

between sound pressure p and displacement x and using the estimated transfer function  

mRjkjH MSF
2

0)(    (23) 

between displacement x and force F leads to the error equation 

  pjHjHL
dt

xd
m

dt

dx
RxxKe FxMS   )()()( 1

2

2

 . (24) 

Equation (24) may be significantly simplified by exciting the suspension with a sinusoidal tone at the resonance ωR 

and writing the error signal in the frequency domain  
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comprising the dc part E0 and the complex amplitude E1 of the fundamental at ωr and the amplitudes Ei of the ith-

order harmonic at ωiR=iωR with i > 1. 

For this special excitation signal we also consider the spectral components of the  measured displacement 
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(26) 

the calculated restoring force  
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(27) 

and the measured sound pressure signal 
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(28) 

Combining Equation (24) with Equations (25)-(28) leads to the dc component  

0 0E F , (29) 

the fundamental component 

2
1 1 1RE F m X   (30) 

and the ith-order harmonics (with i >1)  

 
    iiRFiRx

iiRiMSiRii

PjHjH

XmXRjFE





 2

. 
(31) 

Under the condition that the mechanical resistance RMS is low compared with the imaginary part (QMS > 2) Equation 

(31) may be approximated by  
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    iiRxiRii PjHiXimFE  222 1  (32) 

for  i >1. 

The Equation (27) together with Equation (29), (30) and (32) are the basis for the estimation of the coefficients ki 

with i0. 

10.2 One Signal Method 

The identification of the nonlinear stiffness K(x) may be simplified under the following conditions: 

1. The test enclosure has a relatively large volume (e.g. V = 95 Liter) giving a high acoustical compliance CAB. 

This leads to the following relationship between the impedances  

2
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s
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i C
  

(33) 

for all ith-order harmonics (i>1) generated by the distortion source FD in Fig.  8. 

2. If the diameter of the suspension part is also not very high or the porosity of the suspension material large 

giving a relatively low effective area SS then the compliance of the enclosed air transformed into the mechanical 

domain becomes much smaller than the stiffness of the suspension 
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(34) 

3. If the losses of the  mechanical resonator are relatively small (QMS > 2) then the impedance of the moving mass 

is much higher than the impedance of the losses 

MS
MSiR Q

m
Rm 0   

(35) 

for all ith-order harmonics (i > 1) generated by a sinusoidal excitation signal at resonance frequency ωR.  
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Under those conditions all harmonics generated by the distortion force FD in Fig.  8 fulfill the following relationship  
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(36) 

because the low mechanical impedances of CAB is a shortcut in Fig.  8 for all harmonics in the total force F.   

Also the fundamental component fulfills (36) at resonance frequency ωR.  Only the total driving force corresponding 

to the sound pressure p   

dt

dx
RtpSF MSS  )(  

(37) 

compensates for the mechanical losses and maintains the steady state vibration. 

If the modeling uncertainties and numerical noise should be taken into account Equation  (36) becomes 

2

2
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(38) 

which is the basis for the parameter estimation. 

 

 

 

 

 

 

 

 

 

 



Klippel  
 

Measurement of Suspension Parts 

 

 40

 

 

 

 

 


