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Author’s circuit realization: a pair of miniXLR connectors at the input, with DIL switches

setting the input impedance, another miniXLR pair for differential output, an RCA chinch

pair at the rear for single-ended output, and a 9-pin sub-D connector for external DC power.

The small box houses the inverse passive circuit for testing. An integral design feature is

the complete lack of IP address for IoT connectivity, making the system virtually

unhackable. For other details of the circuit design and performance estimation please see

the text.
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Abstract

Described is a complete design procedure of a vinyl record playback amplifier

equalizer with perfect conformance to the RIAA standard, with some additional features

and possible circuit variations for obtaining lower noise and lower distortion, as well as

cartridge loading impedance adjustment, making it adaptable for various cartridge types.

Explained also is the source and the cause of the most common design error often

made when calculating the equalization component values and a calculation procedure is

shown which results in a perfectly flat equalized frequency response. An easy way of

checking the actual circuit performance is also demonstrated.

Performance Illustrations

  
The startup of an exponentially decaying sine wave at 2 kHz (left) and 18 kHz (right).

  
Square wave response at 1 kHz (left) and 23 kHz (right).

The oscillograms illustrate the performance of the actual RIAA equalization circuit as

described in the article, driven from an inverse RIAA encoding passive circuit (as described in

Appendix 1). In these tests the equalizer circuit was used in a ground referenced input signal mode,

however it is also capable of accepting a signal from a floating source.

The exponentially decaying sine wave with a frequency of 2 kHz and 18 kHz with a 5Hz

repetition rate indicates both a clean transient start and a symmetrical exponential decay, testifying to

the excellent stability of the DC correction integration loop. The square wave of 1 kHz and 23 kHz

testify also of clean high frequency signal handling, as well as perfect equalization matching. With a

suitable high quality cartridge the system bandwidth of up to 60 kHz is achievable, with noise level

being down to 81 dB below the nominal 5mV (at 1 kHz) input signal level.
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Motivation

The temptation to give such an odd title to the article was simply irresistible.

On one hand, I used to be   for quite a while. On the otherSwitched on Bach [1]

hand, from about 1970 onward, when I began fiddling more seriously with Hi-Fi, I have

seen so many mistuned RIAA playback equalization networks, both in literature and in

marketed products, that the idea came up almost naturally. Regardless of whether the

circuits had passive, active, or hybrid equalization, most of them were “tuned” by simply

assigning most convenient  values to get them numerically close to the requiredVG
standard time constants, without bothering much about the resulting frequency response,

which was often far off the usually tolerable ±0.5 dB band. Also, those rare circuits that

were better and flatter in the audio mid band were often peaking or sagging at either the

low or the high frequency extreme, most often both. And like it were not enough, many

circuits exhibited excessive noise, low dynamic headroom, compromised bandwidth and

slew rate, improper pickup loading, and even influence of poor feedback factor on the

amplifier’s input impedance.

In 1974 I got an HP-29C, a pocket calculator with 98 registers (!) of continuous

memory. One of the first tasks I programmed was a routine for the optimization of the

RIAA correction network to standard component values. At the time, precision low

tolerance components were not as common as they are today, so it was necessary to

combine measured components in parallel to obtain the required time constants (a

technique still valid today). However, my first circuit built upon that optimization (using

discrete transistors) was not accurate enough for reasons explained later in the text, and

was also too noisy. My next circuit using integrated operational amplifiers was only

marginally better. Only my third circuit, built in 1978, was worth the ‘equalizer’ title.

With the introduction of digital music media, my interest in audio slowly faded,

although I did return to power amplifier design on a few rare occasions. Recently

however, I was surprised to learn that some general interest in old analogue techniques

is still relatively high. One might think that today there is not much to be said on the

RIAA subject after all the work done by people like Peter J. Baxandall ,  John Linsley[2]

Hood , StanleyLipshitz , and numerous others. But as a recent quick flyby over[3] [4]

some audio web pages revealed, there are still many misconceptions and prejudices.

Another surprise was a discovery that there are still many people willing to build such

things by themselves, motivated essentially by the desire to learn, in spite of the cost of

such an endavour being many times higher than buying a finished product. So here I

present this text for all analogue enthusiasts, young and seasoned, and I hope some

might find it entertaining to read and possibly useful to build.
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The Reference

The RIAA directive (actually a silent agreement between several record

manufacturers, implemented between 1954-1958, after a number of similar previous

proposals) brought standardization to the conversion of the velocity encoded

amplitude of the microgroove record cutter head into an equalized flat spectrum upon

reproduction. The velocity encoding was chosen as a convenient technique to

maximize the groove density on vinyl records in order to achieve ‘long playing’ time,

hence the LP acronym for vinyl media (some interesting history can be found here ).[5]

It is often stated in literature that the standard defines some particular ‘corner

frequencies’ or ‘3 dB frequencies’ to comply with the inverse of the cutter system

response. That is not quite correct, as will be shown. In fact, the encoding standard

only declares the following :three time constants

 µs  ........... response zero at rad sœ $")$ = œ  œ  ¸ # &! Î7 = 1" " "
"
7"

 µs  .......... response pole at rad sœ $")Þ$ = œ  œ  ¸ # &!! Î7 = 1# # #
"
7#

 µs  .............. response zero at rad sœ (& = œ  œ  ¸ # #"## Î7 = 1$ $ $
"
7$

Of course, the equalization network must have the poles in place of the zeros,

and a zero in place of the pole. The approximate angular frequencies are stated here

only for convenience, and it is important to note that those equivalent frequencies (50

Hz, 500Hz, 2122Hz) are  the frequencies at which the response deviates by 3 dBnot

from the asymptotic response. That would be true only in a circuit with a single time

constant, but not for the combination having the time constants relatively close to each

other. This will become evident by calculating the transfer function magnitude within

the frequency domain of interest, and at those particular frequencies.

The cutter system model equation based on the three time constants can be

written in the complex Laplace space in the polynomial form:

J = œ
=  = =  =

=  =
$

" $

#
a b a ba ba b (1)

where  denotes the complex frequency; see  for a complete circuit= Appendix 1

analysis. Replacing the zeros and the pole by their associated time constants,

= œ "Î3 37 , it is possible to write:

J = œ †
=  " =  "

=  "
$

# " $

" $ #
a b a ba ba b7 7 7

7 7 7
(2)

It must be realized that the function defined like this has a response which

diverges to infinity with increasing frequency. This implies infinite energy, and such a

system is physically impossible to realize, because any real system will eventually

encounter a bandwidth limit. In the actual implementation of the encoding function this

limit is usually set at 50 kHz ( µs). Also, the disk cutting system has an7% œ $Þ")$
implicit second pole at 50 kHz imposed by the cutter mechanics. Neither of these has

ever been included in the official standard, even if being physically unavoidable.

Likewise, the driving amplifier bandwidth, though much higher, at around 400 kHz

( µs), was also disregarded. Moreover in most cutting systems a 2 -order7& ¸ !Þ% nd

Butterworth low pass filter at 50 kHz is employed to prevent any possibility of high

frequency overdrive and consequent adjacent groove contact or overlap.
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For these reasons the development of the correct equalization must include at

least one additional pole, and we are going to show that by including  into the7%
reference inversion response makes the designer’s life much easier. The new encoding

equation with four time constants is:

J = œ J = œ †
=  " =  " =  "

=  " =  "
% $

% # % " $

% " $ # %
a b a b a ba ba ba b7 7 7 7 7

7 7 7 7 7
(3)

Similarly a function with five time constants can be written as:

J = œ J = œ †
=  " =  " =  " =  "

=  " =  "
& %

& # % & " $

& " $ # % &
a b a b a ba ba ba ba b7 7 7 7 7 7

7 7 7 7 7 7
(4)

Because of these additional poles, the response at high frequencies does not

rise indefinitely, as is shown in . This is important because most equalizationFig.1

amplifier configurations also deviate in this region, and so do the playback heads with

their mechanical (needle, cantilever, magnet) and electrical (coil and its load)

resonances (usually between 10–30 kHz), and those also need to be taken into

consideration.
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Fig.1: Absolute value of the transfer functions (magnitudes) normalized to the same

value at DC. The tabulated numerical values are given for . At 20 kHz lJ = l lJ = l& $a b a b
is about 1 dB higher, and crosses 0 dB at 50 kHz.  approaches 0 dB at 1MHz.lJ = l%a b

 Because of the particular circuit topology of the equalization network, we

shall base our discussion on , equation (3), using these four time constants:J =%a b
 µsœ $")$7"
 µsœ $")Þ$7#
 µsœ (&7$
 µs (5)œ $Þ")$7%
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We shall include other bandwidth limitations at a later stage, after the basic

circuit response has been correctly established.

When plotting any complex function we usually calculate separately its

magnitude and phase angle as functions of frequency (Bode plot, ). The phase is the[8]

arctangent of the imaginary to real part ratio, , but we: œ e J = Îd J =arctana be f e fa b a b
are not particularly interested in this here. We are more concerned with the magnitude

(absolute value), which is the square root of the product of the function with its own

complex conjugate (to denote this explicitly we set ):= œ 4 œ 4# 0= 1

lJ 4 l œa b= È a b a bJ 4 † J 4= = (6)

Note that equations (2), (3) and (4) have different multiplication factors owed

to the different number of time constants, which effectively means different

attenuations, so in order to make a fair comparison we shall normalize all three

responses to the DC level ( ) of equation (4). This means that we shall use= œ !
7 7 7 7# % " $ $ % &Î lJ = l lJ = l lJ = l for all three expressions.  shows , , and , alongFig.1 a b a b a b
with the appropriate asymptotes (black line), with crosses marking the frequencies

corresponding to the defined time constants.

From the tabulated values in  we can see that the response at 50Hz isFig.1

about 3 dB higher than at 0.1Hz, as expected. But at 500Hz it is about 2.65 dB below

the value at 1 kHz (not 3 dB, as is often assumed), and similarly at 2120Hz it is about

2.85 dB higher than the value at 1 kHz. Then, at 20 kHz the value of  andlJ = l%a b
lJ = l&a b  is only about 19 dB above the value at 1 kHz, instead of 20 dB as is often
assumed. This simply means that using the 3 dB break points for calculating the

component values of the equalization network will not yield a flat response.

When plotting the responses, and to be able to see their differences easier, we

shall normalize the responses of both the inverse and the equalized RIAA network to

their value at 1 kHz, and we can deal with the actual attenuation and the required gain

later. The normalization is done simply by dividing the frequency response of a

particular function by its value at 1 kHz:0 œ"

J œ
J 4# 0

J 4# 0
3

3

3 "
N

a ba b1

1
(7)

On the dB scale of  this simply means shifting the response up by 27.53 dB. WeFig.1

shall append the index ‘N’ to a function normalized in this way. To avoid any possible

confusion, we shall denote an inverse RIAA function as , whilst for theJ =a b
equalization network we shall write . So, for example,  will mean theK = J =a b a b%N

inverse RIAA function with 4 time constants, with gain normalized to 1 kHz.

Important consideration: As we shall see soon, the response of the preferred

equalization network has an implicit zero at high frequencies, which is owed not to an

actual time constant but to the particular circuit topology, with the resulting response

similar to the inverse  function. For this reason, a purely theoretical calculationlJ = l%a b
of component values based on the equalization transfer function will produce an

approximation of the required response, not an exact one. This is the source of the

most important misconception, which to my knowledge has never been adequately

explained in literature. To arrive at the exact response, and a flat frequency response

after equalization, we shall have to implement a correction by including  artificially.7%
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The Equalization

There are several ways to generate an equalization function. A passive

equalization network placed between two amplifying stages, as shown in , wasFig.2

inherited from the tube/valve era, and has experienced a revival since 1980s.
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Fig.2: Typical passive RIAA correction network; component values as usually found in literature.

Passive equalization became popular again after some audio ‘gurus’ expressed

their concern over amplifiers having capacitive feedback, supposedly sounding “all

wrong” and “spoiling” the time constants. In fact, passive equalization is noisier, prone

to clipping at high frequencies, and can suffer from slew rate distortion on transients,

whilst time constant mismatch can be (often is) as bad as in active systems.

Conventional ‘active’ configurations employ a pair of  components in theVG
feedback of an amplifier, the most common circuits are shown in  and .Fig.3 Fig.4
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Fig.3: Typical type A active RIAA correction network.
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Fig.4: Typical type B active RIAA correction network.

Besides these, hybrid (passive + active) examples, such as in , are alsoFig.5

found in literature, though not so often in commercial products. Whilst breaking the

equalization network in separate sections makes it easier to calculate the correct
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component values, problems with high frequency overdrive, slew rate limiting, and

noise, remain similar as in purely passive systems.
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1k1
3k3

A1 A2

p

7k5

10nF

100nF

47k
100pF

Rpu

L pu

pu
33k

Fig.5: Hybrid (active and passive) RIAA correction network.

By any experienced electronics engineer all these circuits can be legitimately

characterized as YATA (yet another trivial amplifier). However, a thorough analysis of

their performance is anything but trivial. Consequently approximations and design

shortcuts have been extensively used, resulting in compromised or indeed flawed

designs to the bitter dissatisfaction of audiophiles, but also causing misjudgments and

misconceptions, and endless debates in literature, as well as unjustly interpreting the

problem as poor performance of a phonograph cartridge.

Here we present the analysis and response optimization of the circuit in ,Fig.4

with some additional improvements further on. At first we concentrate on getting the

amplifier feedback set up correctly, neglecting the cartridge internal impedance,

V œ ! P œ ! @ œ @pu pu pu p and , thus also . Later we include the influence of the input

impedance loading the cartridge internal impedance, and then show a few examples of

various cartridge types and their response optimization.

For an ideal and not overdriven amplifier we can assume:

@ ¸ @n p (8)

because any feedback amplifier with a high open loop gain will force the difference

between the inverting and non-inverting input to a minimum (see  for theAppendix 2

complete analysis). Consequently the current in the feedback loop is:

3 œ
@

V
f

p

$
(9)

The impedance of the feedback branch is:

@  @

3
œ  V

" "

=G  =G 
" "

V V

o p

f
" #

" #

% (10)

The amplifier’s transfer function is obtained by inserting (9) into (10):

V œ  V
@  @

@ =G V  " =G V  "

V V
$ %

" #

" " # #

o p

p

(11)

What follows is just simple arithmetic manipulation and reordering, but we

shall write each step explicitly, to make the life easier for readers allergic to maths. We

first divide all the terms in (11) by :V$
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@ " V " V V

@ V =G V  " V =G V  " V
 " œ †  † 

o

p $ " " $ # # $

" # %
(12)

and transfer the  term to the right hand side:"

@ " V " V V

@ V =G V  " V =G V  " V
œ †  †   "

o

p $ " " $ # # $

" # %
(13)

We want to put the two frequency dependent terms on the same denominator:

@ " V =G V  "  V =G V  " V

@ V =G V  " =G V  " V
œ †   "

o

p $ " " # # $

" # # # " " %a b a ba ba b (14)

Since this function must be an inversion of (3), the denominator is already in the form

expected as the numerator in (3), with the time constants  and .7 7" " " $ # #œ G V œ G V
To find  we must reorder the numerator of (14) to separate the frequency dependent7#
term, so we multiply each parenthesis by its appropriate :V

@ " =G V V V  =G V V V V

@ V =G V  " =G V  " V
œ †   "

o

p $ " " # # $

# " # " " " # # %a b a ba ba b (15)

then we extract the common terms:

@ " = G  G V V V V V

@ V =G V  " =G V  " V
œ †   "

o

p $ " " # # $

# " " # " # %a ba ba b (16)

We need to make the additive term in the numerator equal to 1, instead of , soV V" #

let us divide the numerator by  and multiply by it in front:V V" #

K = œ œ †   "
@ V  V V

@ V =G V  " =G V  " V

= G  G  "
V V

V V
$

" # %

$ " " # # $

" #
" #

" #a b a b
a ba bo

p

(17)

Now the numerator contains the explicit expression for the second system time

constant , so we can assign:7#

7" " "œ G V (18)

7$ # #œ G V (19)

7# " #
" #

" #
œ G  G

V V

V V
a b (20)

The transfer function (17) has, as expected, a second order polynomial in  in=
the denominator, and a first order polynomial in  in the numerator, so three time=
constants in total, which is the reason for labeling it . It also has a DC gain factorK =$a ba bV V ÎV "  V ÎV" # $ % $, as well as a frequency independent gain, , which will be

dealt with a little later.

When calculating the component values we would like to have standard values

wherever possible, so let us take the following convenient values for :7$
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G œ# 10 nF (21)

V œ# 7.5 k (22)H

Next, from (18) we express :G"

G œ
V

"
"

"

7
(23)

and similarly from (19) for :G#

G œ
V

#
$

#

7
(24)

With (23) and (24) we return to (20):

7
7 7

#
" $ " #

" # " #
œ 

V V V V

V VŒ  (25)

We multiply all by V V" # and obtain:

7 7 7# " # " # $ "a bV V œ V  V (26)

We now divide all by :7#

V V œ V  V" # # "
" $

# #

7 7

7 7
(27)

and group together the expressions containing the same :V

V "  œ V  "" #
$ "

# #
Œ  Œ 7 7

7 7
(28)

and we can now express  as:V"

V œ V



" #

" #

# $

7 7

7 7
(29)

By inserting the appropriate values, we obtain:

V œ ))$" 08H (30)

Finally, from (23) we get:

G œ $'Þ!" 46 nF (31)

Before we calculate the response using (17), we must determine  and .V V$ %

For a moment, let us assume that , and look for the value of  which will giveV œ ! V% $

the circuit the same DC gain as is the attenuation in (3). So we can write:

V V

V
 " œ

" #

$

7 7

7 7
" $

# %
(32)

and from this  is equal to:V$

V œ
V V

$
" #

7 7

7 7
" $

# %
 "

(33)

By inserting the appropriate numerical values we obtain:
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V œ %!)Þ$%$ H (34)

Now we can check the system response by driving the equalized response

K = J =$ %a b a b (17) from the output of the inverse function  (3). In the frequency domain

this requires a simple multiplication of the two: . Of course, to plot theJ = † K =% $a b a b
response magnitude we must take the absolute value of the total complex function.

In order to see both functions on the same plotting scale together with their

product, we have normalized  to  as in (6), and in the same way  toJ = J = K =% % $a b a b a bN

K = J = † K = J 4 † K 4$ % $ % $N N N N Na b a b a b a b a b, then multiplied , rewritten it as  and finally= =
taken the absolute value to obtain the response magnitude as a function of frequency:

 (35)Q œ lJ 4 † K 4 l œ J 4 † J 4 † K 4 † K 4a b a b a b a b a b a b a bÈ= = = = = = =% $ % % $ $N N N N N N

Analytically this requires a lot of hard work. But today most mathematical

computer programs on the market (such as Matlab™, Mathematica™, MathCad™,

and others) have the possibility to calculate the absolute value of a complex function

for a range of frequencies directly. And likewise, all circuit simulator programs do the

same for the AC response analysis. Of course, the actual function must be the same,

regardless of the normalization.

In  the result of encoding the response into Matlab™ is shown (seeFig.6

Appendix 5 Fig.7 for the complete calculation procedure), and  shows the deviation

from a flat response in high detail (±0.5 dB vertical scale).
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Fig.6: The inverse function  multiplying the equalization function  shouldJ = K =%N Na b a b
produce a flat response, | |. At the 60 dB vertical scale the result looks like aJ = † K =%N Na b a b
straight line; a close up view in  shows deviations at both low and high frequencies.Fig.7
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Fig.7: Expanding the vertical scale to ±0.5 dB reveals a deviation from flat response at

both high and low frequencies. It may seem that being within 0.3 dB the response is

acceptable, but we should and can do better.

The question that arises by looking at  is: Fig.7 since the response is not as

flat as we expected, did we make a calculation error, and if so, where?

The answer is: no error was made in the calculations, but in the original

assumption! We have purposely done that in order to expose the most common error

made in the past by many circuit designers.

As stated in a previous , the deviation from flatness in  stems from thenote Fig.7

equalization network not having a time constant at 50 kHz, unlike the inversion

function . The  has only three time constants, but its response plot doesJ = K =% $a b a b
mimic the inverse of  above 50 kHz like having an additional zero, yet J =%a b this is a

consequence of approaching the unity gain caused by the circuit topology, not

because of an actual  time constant!VG  Consequently, the effective corner

frequency is gain dependent, and the gain depends on the value of , and we haveV$

calculated  from the sum  multiplied by three time constants (29), where V V V$ " # %7
is missing, which means that the obtained .value of  was actually wrongV"

In order to correct the problem, we must recalculate  by including theV"

influence of  in the equation (29) artificially:7%

V œ V "  œ



" #

" # %

# $ $

7 7 7

7 7 7
HŒ  92055 (36)

Then recalculating  from (18) gives:G"

G œ $%Þ&()" nF (37)

and recalculating  as in (33) gives:V$

V œ$ 424.3 (38)H

As is shown in , with these results the response deviates by less than 0.01 dB.Fig.8

An identical result for  could be obtained also from equation (17) if weV$

consider that at 50 kHz the absolute value of the transfer function (still with )V œ !%

must be . This means that we can equate:l4  "l œ #È
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4  " œ   "
V V =  " V

V =  " =  " V
" # # %

$ " $ $

7

7 7a ba b
So 1 cancels, and after multiplying all by  and taking the absolute value we have:V$

V œ V V
=  "

=  " =  "
$ " #

#

" $ =œ4# &!!!!

a bº ºa ba b7

7 7 1

Hence, because  must be evaluated at , the inclusion of  in= 4# &!!!! œ "Î# &!!!!1 7 1%

equation (36) is hereby justified.
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Fig.8: Acceptable response flatness is achieved by accounting for  in equation (36).7%

Now that  is known it is easy to calculate the required system gain. BecauseV$

we kept , the calculated value of  must actually be redistributed to .V œ ! V V V% $ % $

But the final gain will still depend mostly on . To determine the gain from the circuitV$

input and output requirements, we must make a short digression into history.

Regarding the input requirements, the nominal record modulation velocity is

5cm s at 1kHz (another RIAA agreement), and phonograph cartridges of the movingÎ
magnet and variable reluctance type are usually designed to deliver 3–5mV  at suchrms

modulation (as given by the sensitivity parameter in manufacturer’s specifications).

Moving coil types usually deliver 0.1–0.5mV . But there are exceptions to this rule.rms

As for the output, there is a recommended standard value for the ‘line input’ in

audio equipment, and it is often being referred to as 10 dBm. How much is that?

The unit B (‘bel’, established at Bell Labs in the 1930s, and named in honour to

Alexander Graham Bell) is defined as the decade logarithm of the network power

transfer ratio, . The dB is the ‘decibel’, or 1 10 of a bel, thus the samelog"!a bT ÎT Îout in

power ratio expressed in dB equals 10 . The suffix ‘m’ in dBm standslog"!a bT ÎTout in

for the input reference power of 1mW applied to a load of 600  (both valuesH
inherited from the telephone line development era), and this power represents the

0 dBm reference. Strictly speaking, the dB unit should be used only for expressing

power ratios, and only when the input and output load impedance is the same.

Generally, in amplifiers this seldom the case. So over time it has become customary to

express voltage ratios (amplifier gain) over different input and output loading also in

dB, which is sometimes more correctly indicated as dBV (but this often means that the
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reference signal level is 1V ). Since the power is proportional to voltage squared, therms

dB value for voltages is calculated as 10 , or 20 .log log"! "!
# #a b a bZ ÎZ Z ÎZout in out in

The electrical power is the product of voltage and current, , andT œ Z M
because the current is impedance dependent, , the power is proportional toM œ Z Î^
the voltage squared, . Given the power and the impedance, the voltageT œ Z Î^#

required is equal to the square root of the power-impedance product, .Z œ T ^È
For a 0 dBm level this means 0.001 600 0.7746V . Then, 10dBm will beÈ † œ rmsÈ0.0001 600 , or lower by a factor of 10 , or 0.3162 0.7746 0.245V .† † œa b"!Î#!

rms

So by assuming a 5mV input and a 245mV output, the minimum required gain

at 1 kHz is 245 5 49×. For a 3mV signal, the gain should be 82×. And for the 0.5Î œ
mV of a moving coil cartridge we need a gain of 490×.

With this knowledge we return to the circuit. The feedback branch impedance

expression was given in (10). Excluding  for a moment, the impedance is:V4

^ 4 œ 
V V

4 G V  " 4 G V  "
f a b=

= =
" #

" " # #
(39)

and its absolute value is:

l^ 4 l œ ^ 4 † ^ 4f f fa b a b a bÈ= = = (40)

or explicitly:

 œ  l^ 4 l
V V V V

4 G V  " 4 G V  " 4 G V  " 4 G V  "
fa b ËŒ Œ =

= = = =

" # " #

" " # # " " # #

 œ †
V 4 G V  "  V 4 G V  " V 4 G V  "  V 4 G V  "

4 G V  " 4 G V  " 4 G V  " 4 G V  "Ë a b a b a b a ba ba b a ba b" # # # " " " # # # " "

" " # # " " # #

= = = =

= = = =

 œ
V 4 G V  "  V 4 G V  " V 4 G V  "  V 4 G V  "

G V  " G V  "Ë c dc da b a b a b a ba ba b" # # # " " " # # # " "

# #
" " # #
# # # #

= = = =

= =

 œ
V G V  "  #V V G V G V  "  V G V  "

G V  " G V  "Ë a b a b a ba ba b" # # # " "
# # # # # ## # #

" # " " # #

# #
" " # #
# # # #

= = =

= =
(41)

With the values chosen in (21), (22), (36) and (37), the absolute value of the

feedback impedance at 1 kHz (with ) is:0 œ œ # 0= 1

V œ l^ 4# "!!! l œf1k f a b1 H9825 (42)

Then the amplifier’s gain  at 1 kHz is given by:E1k

E œ  "
V V

V
1k

f1k %

$
(43)

Without , and for 49×, the value of  should be 48× smaller thanV E œ V% $1k

Vf1k, or about 205 . But we have shown that to achieve an acceptable responseH
flatness, a value of 424  is necessary. Note however that there are twoV V œ$ % H
other reasons for having a higher resistance value in the feedback to ground path.
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One reason is that the amplifier must be capable of driving that impedance at

high frequencies, where the feedback impedance is the same or lower, owed to the

capacitive path. And not just at the nominal output level of 245mV , but also atrms

some 20 to 30 dB higher level, 2.45–7.75V , or almost 11V peak! Such a headroomrms

is necessary for clean processing of high level transients in high quality recordings.

With only 200 ohm, this requires 55mA peak at 20 kHz, not including any additional

loading by the following circuitry. At those levels the amplifier’s output overload

protection must not be activated if low distortion is expected, and most IC amplifiers

will distort already at 10–15mA.

The other reason is amplifier’s stability. Namely, many amplifiers with high

bandwidth are being offered as ‘decompensated’ (typical examples include the popular

OP37 and  NE5534; this last one may be compensated externally, but others give no

such option). This means that their internal dominant pole is set higher than the usual

~100Hz, with the consequence of the secondary pole of the output stage

compromising the loop phase margin, therefore a minimal gain of 4× or 5× is required

(at unity gain, or with a capacitive load of an ordinary 1m long coaxial cable, such

amplifiers will oscillate). Of course, it would be best and simplest to employ a unity

gain stable amplifier, but until recently a stable audio grade amplifier with low noise,

high output current, high bandwidth, high slew rate, and low distortion was either

unavailable or was a compromise in one way or another.

On the other hand, a high effective feedback resistance would also have a high

thermal noise, comparable to that of the cartridge, so lowering the value of  in favorV$

to  gives us just what is required. In  we give several values of gain, , andV V% $Table 1

V% for various cartridge sensitivities, calculated after equation (43).

Table 1
Sensitivity

[mv @ 1kHz, 5cm s]Î $ %Gain Gain [dB]  [ ]  [ ]

5.0 49× 33.8 206 218

3.5 70× 36.9 146 278

3.0 81.67× 38.24 127 299

0.5 490× 53.8 21 403

V VH H

Regarding standard component values (E24 set for resistors, and E12 for

capacitors), here we give some parallel combinations which result in values close

enough to those required. Of course, if easily available, the E48 or E96 set may be

preferred, because tolerances add up for combinations of components (either serial or

parallel). This undesirable property may be reduced slightly by selecting one high and

one low value in the hope that the tolerance of the high value will not change the

combined value by much, so even if a 1% tolerance of each component result in a 2%

total, the actual individual variation will be less than 1%, and will therefore spoil the

value by a lower amount. Whilst resistors are easily found in 0.5% or even 0.1%

ranges, capacitors are usually in the 20%, 10%, and 5% ranges, but in the 5% range

only the most common decade values are ordinarily available. So hand-picking the

correct values from a large bunch will be unavoidable in practice.

The values for  (7500 ) and  (10 nF) have been already chosen from theV G# #H
standard E24 set, so we only need to measure and select those which will be within

0.1%. For the remaining values here are a few possible parallel combinations which
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will be within 0.5% or so, assuming exact values (of course, it is always possible to

find slightly different values which will give better results):

V œ #!'Þ$ Ä œ Ä !Þ$
"

" "

#%! "&!!


$ H H 206.9 %

V œ #")Þ$ Ä œ #!")Þ# Ä !Þ!&
"

" "

#%! #%!!


% H H %

V œ *#!&& Ä œ *#Þ' Ä !Þ'
"

" "

"'! ##!


" H H

k k

k %

G œ $%Þ&) Ä $$  "Þ& œ $%Þ& Ä !Þ#" nF  nF nF nF %

R2 +1%

R2 –1%
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Fig.9: Influence of components’ ±1% tolerance on various parts of the spectrum.
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Another possibility for  would be a parallel combination of 22 nF and 12 nFG"

nominal, each with a slightly larger value, or maybe a pair of 68 nF in series. In most

cases the actual value of a component is on the low side of the tolerance range, and

this can be used to advantage when selecting combined values manually to obtain a

value closer to the optimal.

In  we report the influence of each individual component change by 1%Fig.9 „
on the system’s flatness deviation. We can see that such changes result in less than 0.1

dB deviation. Note however, that combined variations of two or more components

can have a greater combined effect. This is especially true for , the influence ofG"

which extends into the spectral range influenced by both  and . Likewise,  willG V V# # #

also alter the spectral range under dominant influence of  and  A slight inverseG V Þ" "

variations from both  and  is seen between 200Hz and 1 kHz.G V# "

V V V$ % % and  are less problematic, since  affects only the ultrasonic range, and

V$ affects the whole audible range equally.

The Cartridge and its Load

We now want include the effect of the cartridge’s internal impedance and its

load into the equation. Since at high frequencies the cartridge impedance is dominantly

inductive, and its load is dominantly capacitive (because of the connecting cable and

the amplifier's input capacitance), there will be a pronounced resonance at or above 15

kHz, and this must be taken into account.

In the following analysis we shall assume that the previously calculated circuit

response  will correctly equalize the encoding function , so the productK = J =$ %a b a b
J = † K =% $a b a b is flat, and can be neglected for cartridge response optimization.

In  the generator  represents the cartridge nominal output (usuallyFig.4 @pu
between 3–5mV for the 5 cm s groove modulation velocity at 1 kHz). The resistorÎ
V Ppu pu represents the coil wire resistance and  represents the coil and magnetic core

inductance. The signal  is the output signal when the cartridge is loaded by its@p
nominal load  and the cable and amplifier’s input capacitance . But  and V G P Vb b pu pu

can vary widely between manufacturers, and also between models from the same

manufacturer! Some popular examples: Sonus Blue and Gold series have 150mH and

300 , Ortofon 2M Black has 630mH and 1200 ; but notable exceptions includeH H
Grado G1+ with only 55mH and 700 , and Stanton 681EEE MkIII with 930mH andH
13 k . And we are not even considering low output moving coil types here!H

We shall illustrate the influence of the cartridge impedance components by

using the following three examples to cover the most common range of values:

Table 2

Type

Impedance

 [mH] 150 300 600

 [ ] 300 600 1200

^ ^ ^

P

V

A B C

pu

pu H

Here we are interested only in the response variation with frequency that is

owed to the electrical impedance of the pickup and its load. The mechanical resonance
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of the needle, the cantilever, and the magnet moving mass, with the cantilever support

compliance (elasticity modulus) are given by the type of cartridge, and are not

influenced by the circuitry. Mechanical cartridge-tonearm resonances usually affect the

deep bass and sub-audio frequencies, whilst the cantilever resonance and other

mechanical properties affect the upper audio range. To compensate for this some

manufacturers specify  and  such to intentionally enhance high frequencies, soV Gb b

checking the actual response will be necessary when using a different load.

Low frequency resonances can be dealt with either by increasing mass, or

compliance, or both. However high compliance cartirdges are not suitable for many

tonearms, and a high mass at the end of the tonearm increases the system’s inertia,

which in turn increases record wear. Likewise, a high turntable mass causes high axis

pressure, increasing mechanical wear and in time developing rumble. A judicious

compromise is necessary. Making the turntable support mass high, and adding soft

suspension to decouple all from other supporting masses, thus preventing the bass

transmission through the material, is often the best way to go.

Returning to the cartridge equivalent circuit, the ratio  can be found@ Î@p pu

from voltages on their associated impedances:

@  @ @

=P  V
œ

"

=G 
"

V

pu p p

pu pu

b
b

(44)

With a little reordering we obtain the transfer function:

 (45)L = œ œ †
@ P G V

@ V V

V

" V
 "

=  =    "
" "

G V P P G V

V V
a b Œ 

Œ  Œ 
p pu b b

pu g b

b

pu

b b pu pu b b

pu pu#

Fig.10 shows a plot of (45) against frequency for the three representative

cartridge impedances given in .Table 2

As can be seen from the plot, low impedance cartridges tend to peak in the

ultrasonic part of the spectrum, at 20–30 kHz (this was once considered desirable for

quadrophonic reproduction), whilst high impedance versions tend to attenuate above

10 kHz. Both effects can be reduced by lowering , but this will be ultimately limitedGb
by the cable capacitance.

The peaking can also be reduced by lowering , but this attenuates the signalVb
because of the frequency independent term in (45):

+ œ
V

V V
b

pu b

(46)

However pay attention to the cartridge mechanical response, because some cartridge

manufacturers compensate its influence by deliberately specifying a lighter electrical

loading, enhancing high frequencies. Always check the response using a good test

record, either with continuous tone at various frequencies or by a 1 kHz squarewave.
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As will be shown later, making the amplifier’s input impedance adaptable by a small

DIL switch array can save us a lot of soldering.
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Fig.10: Influence of cartridge impedance on the frequency response. Lower impedance

types are generally preferable for lower noise, but they require lower cable and input

capacitance , and or lower input resistance . See  and .G Î Vb b Fig.11 Fig.12

The resonant frequency is given by the last term of the denominator of (45):

0 œ œ  "
# # P G V

" " V
r

r

pu b b

pu=

1 1 Ë Œ  (47)

The damping factor  is obtained from the denominator’s middle term:0 œ "Î#U

# œ 
"

G V P

V
0=r

b b pu

pu
(48)

0 œ  
"

# G V V V V V P V V

P #V G V VË a b a bpu pu pu

b b pu b pu b pu pu b

b b
#

  
(49)

The influence of  is shown in . Lower value results in lower peakingGb Fig.11

and larger bandwidth. Since  includes the capacitance of the cable, which usually hasGb
about 100 pF m, shortening the cable may be beneficial, if possible.Î

The load resistance  influences the system damping, as  shows. LowerVb Fig.12

value results in lower peaking. What is required is not a ‘critical damping’, ( ),0 œ !Þ&
which insures no overshoot on transients, but rather a Bessel-like damping, with

0 œ "ÎÈ$ , which gives a slightly higher bandwidth and an envelope time delay  equal

for all frequencies up to the upper bandwidth limit. Time delay is the phase derivative

of frequency, , so if  is flat, the phase must vary linearly with frequency7 : = 7e eœ . Î.
within the bandwidth of interest, therefore such systems are often being referred to as
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‘linear phase’. What is more important is that such systems also exhibit the fastest rise

time, , with minimal overshoot (~0.5% of the step amplitude). This means noFig.13

ringing on transients.
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Fig.11: Influence of capacitive loading on the frequency response. Lower  values are preferable.Gb
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the envelope time delay ( ). Lower values reduce the high frequency peaking and7e
increase the pass-band time delay, but also decrease the time delay at resonance.

Bessel-like response (maximally flat time delay, ) is obtained with k .7 H$ V œ #$b

Generally speaking, because both  and  are affected by  and , it is= 0r b bG V
important to have the load adjusted to the system by observing the rise time overshoot
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on an oscilloscope using some low frequency square wave as the driving signal. Note

also that the total system thermal noise is proportional to the square root of the real

part of the total input impedance and the bandwidth. The total noise of the system will

be examined in detail a little later.
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Fig.13: Time domain step response for the same conditions as in Fig.12.

The System

The complete system transfer function is obtained by multiplying  (4) withJ =%a b
L = K =a b a b (44) and  (17):$

I = œ J = † L = † K =a b a b a b a b% $ (50)

Regarding the cartridge response s , here we are using  andL V œ '!!a b pu H

P œ $!!pu mH because those values are fairly close to the average of what is found on

the market. However, the reader is encouraged to insert the values of his own

cartridge and loading in order to check his own system, either on a circuit simulator or

with the aid of a mathematical program. Also we shall use pF because theG œ "#!b

majority of people will probably be reluctant to cut in half the 1m long cable from the

turntable (which usually has 100 pF m), and the amplifier input will have an additionalÎ
20 pF at least, and some will offer the possibility of adjusting  (to higher values).Gb

For  we shall use the values already calculated, and the reader can changeK =a b
the values of  and  to obtain the correct gain for his own cartridge sensitivity.V V$ %

Fig.14 shows the resulting responses. Note that we are using the 1 kHz normalization,

that is  and  responses.J = K =% $N Na b a b
Note that the cartridge response peaking at 15 kHz (or above) is lowered by

the single pole at 50 kHz, which needs to be added after the RIAA equalization circuit.
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Since cartridges have very different impedances, any remaining peaking will need to be

adjusted by  and .  shows the complete schematic. The gain settings forV Gb b Fig.15

different cartridge sensitivity must be made so that  is constant!V V$ %
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dashed lines show the influence of a 2 -order Butterworth filter at 50 kHz in the recordnd

cutter system; it affects the responses only beyond 20 kHz.

R3c R3a

Rpu

R1

C1

R2

C2

R4

A
o

p

Lpu
RbCb

n

pu

Rf

Cf

f

300mH

600

120pF 47k

6013115 218 7k5 92.6k

10nF 34.5nF

2.12k

1.5nF

R3b

abc

Sg

206

Fig.15: Complete circuit schematic with values; a switch sets the gain for different

cartridge sensitivities: a) normal (5mV), b) low (3.5mV), c) moving coil (0.3mV).

The transfer function for the complete circuit in Fig.15 is again a simple

product of  (45),  (17), and the transfer function of the  low pass filter;L = K = G Va b a b f f

this is shown by the blue curve in . For the evaluation of the response flatnessFig.14

we must multiply the circuit transfer function by .J =%a b
@ "

@ =G V  "
œ J = † L = † K = † N = œ J = † L = † K = †

f

pu f f
% $ " % $a b a b a b a b a b a b a b (51)
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In  we show how the influence of the low pass filter  can be take intoFig.16 N"
account when setting up the load of the cartridge. We compare the manufacturer’s

recommended load settings with optimized settings for six popular cartridge types,

both in frequency domain and time domain. We assume the RIAA equalization is done

correctly, and take into account only the 400 kHz encoding bandwidth limit together

with the 50 kHz limit. It is clear that the manufacturer’s settings seldom result in

adequate time domain response. So the optimization has been performed for the time

domain response minimizing the overshoot of the step response waveform and

maximizing the bandwidth, and the resulting frequency response is shown along.

10
3

10
4

10
5

10
6

–12

–15

–18

–21

–9

–6

–3

0

3

6

[d
B
]

f [Hz]

400kHz

50kH
z +
 400kH

z

Grado Prstige Silver

Ortofon MC3 T

Sonus Blue

Stanton ST500E MkII

ADC XLM MkIII

Ortofon OM5E

10
3

10
4

10
5

10
6

–12

–15

–18

–21

–9

–6

–3

0

3

[d
B
]

f [Hz]

400kHz

50kH
z +
 400kH

z

Grado Prstige Silver

Ortofon MC3 T

Sonus Blue

Stanton ST500E MkII

ADC XLM MkIII

Ortofon OM5E

0 10 20 30 40 50 60 70 80 90 100
–1

0

1

2

3

4

5

6

t  [µs]

7

8

Grado Prstige Silver

Ortofon MC3 T

Sonus Blue

Stanton ST500E MkII

ADC XLM MkIII

Ortofon OM5E

[m
V
]

0 10 20 30 40 50 60 70 80 90 100
–1

0

1

2

3

4

5

6

t  [µs]

Grado Prstige Silver

Ortofon MC3 T

Sonus Blue

Stanton ST500E MkII

ADC XLM MkIII

Ortofon OM5E

[m
V
]

Fig.16: Modifying cartridge load (  and ) to obtain the lowest overshoot for a maximalG Vb b

bandwidth. Most manufacturers prefer a high degree of high frequency peaking (left hand

figures), as this gives a sense of ‘brightness’ and ‘openness’. A proper adjustment can be

achieved for most cartridges (right hand figures), even with very different internal

impedance.

The DC Offset

An additional problem to solve in the circuit of  is the DC offset. ThisFig.15

has been traditionally dealt with by adding a large capacitor in series with . SuchV$

low frequency filtering helps to reduce the amplification of the rumble generated by the

turntable shaft, bearing, and driving mechanism, and preventing possible acoustic

feedback below 20Hz if the loudspeaker system with a large subwoofer is used.

In 1972 the IEC proposed an additional break point at 20Hz to be part of the

reproduction standard (but not the recording!). So a low frequency roll off is desirable

for several reasons. But church organ music fans will probably make a grim face at

this, since the C  bass pedal note is at 16.203Hz. Of course, it is always possible to!

make the cut off below 16Hz, but then the mentioned problems may resurface.

The relation for the low frequency cut off, which multiplies (51), is simply:
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J = œ
=

= 
"

G V

!

! $

a b (52)

where  is the capacitor added between  and ground. But because of the very lowG V! $

value of , cutting the response at 20Hz or below requires a large capacitance value,V$

about 50 µF for 206  and 16Hz. And because electrolytic capacitors are theV œ$ H
only type offering such large values, two back to back electrolytics of a double value,

in parallel with a 0.1–1 µF polystyrene or polypropylene capacitor are required in order

to avoid asymmetrical impedance and bypass the large serial inductance of the

electrolytic capacitors.

Readers not willing to renounce to the full bass depth of the  Bach’s Toccata

and Fugue in D minor Also sprach Zarathustra, or the  , will have toRichard Strauss’

use 2× 150µF (for each channel) for a 3 dB limit at ~5.5Hz, thus keeping those
precious 16Hz within the desirable pass band.

Shown in  is a modified feedback configuration proposed recently byFig.17

Kendall Castor-Perry in  Vol.1, pp.133–137.Linear Audio

1µF

R2

C2

R3

R1

C1

R4

A
o

p

n

2C0

2C0

Fig.17: One version of the DC blocking principle proposed by Kendall Castor-Perry.

This arrangement allows most of the feedback current to pass via  and  toG G" #

V V V$ " #, and only at low frequencies a very small current via  and  will go through

those large nonlinear electrolytics, so their influence is minimized.

But those large capacitors are now floating, so they represent a large stray

capacitance to surrounding fields from transformers, RF sources (mobile phones), etc.

Fig.18 shows an easy way of avoiding large capacitors by using a simple and cheap

positive integrator servo loop with only a single capacitor of moderate value.

By itself, the DC offset is not a problem in audio. But if too large, it can reduce

the signal headroom on one polarity, since the gain at DC is about 500×. For example,

an OP37 with its ~10 µV input offset in place of the main amplifier  will exhibit aE
maximum output offset of 5mV or so, which is tolerable. But the 4mV input offset of

an NE5534 will be amplified to 2V.

The integrator in  with an OP277 (an improved version of the popularFig.18

OP07) can easily reduce this below 20 µV at the output node . Also, any system with@o
a large DC offset will generate a large step at the output at power on. This is

prevented if the power supply rises slowly, say < 2V s.Î
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Fig.18: An integrator servo loop using an OP277 can reduce the DC offset to less than 20 µV.

We start the analysis of the loop by finding the current  through :3 Gc int

3 œ
@
"

=G

c
c

int

(53)

Here  is the voltage across the integration capacitor . The OP277 is configured@ Gc int

for a gain of 2× by two equal resistors in its negative feedback loop, , and asV œ V( )

long as the circuit is in the linear range, the voltage at the inverting input will be equal

to . The integration condition is achieved if . Therefore:@ V ÎV œ V ÎVc ' & ) (

@  @ @

V V
œ

d c c

) (
(54)

We can rearrange this as:

@ œ @  " œ #@
V

V
d c cŒ )

(
(55)

So we can express the sum of all the currents at the  node:@c

@  @ @  @

V V
œ 3 

o c c d
c

& '
(56)

By replacing  with (53), and  with (55), and solving for  gives:3 @ @c d c

@ œ @
"

=G V   "
V

V

c o

int &
&

'

(57)

Thus by making  we have only:V œ V& '

@ œ @ œ †
" @ "

=G V V =G
c o

int int

o

& &
(58)
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Equation (58) is the response of an integrator, integrating the current  on .@ ÎV Go int&

We know this because of the form ; in contrast, an ordinary low pass filter would@ Î=o 7
have  in Laplace space. The driving impedance seen by  is very high,@ Î =  " Go inta b7
limited by the tolerance of  and  and the input impedance of the OP277.V V& '

Now  (55) is applied via  to the inverting input  of . At DC, and@ œ #@ V @ Ed c n*

with , the voltage at the inverting input  of the main amplifier  is the input@ œ ! @ Ep n

offset voltage of . The following equation holds for the DC servo loop:E

@  @ @ @  @

V V V
œ 

d n n n o

DC* $ 
(59)

where . This we reorder as:V œ V V VDC " # %

@ œ @ "    @
V V V

V V V
d n o

DC DC
Œ * * *

$
(60)

We are interested in the value of , so:@a

@ œ @ "    @
V V V V

V V V V
o n d

DC

DC DCŒ * *

$ * *
(61)

We replace  with  from (55), and then replace  from (58):@ #@ @d c c

@ œ @  "   # †
V V @ " V

V V V =G V
o n

DC DC o DC

int
Œ 

$ * & *
(62)

Effectively (62) defines a transfer function with a single zero at , or"ÎG Vint &

@ Î@ œ O =Î = O ÎG V @ ÎVo n int o" # & &a b. We have intentionally left  on the right hand

side, since it is the DC error current, proportional to , integrated to correct back .@ @o o

The equation (62) means that the input offset  is amplified by slightly more than the@n
closed loop DC gain of , and then reduced (note the negative sign!) by theE
integration of the error current on , itself amplified by .G # V V V ÎVint a b" # % *

Instead of the expression in the Laplace space, we could have written the

relationship between  and  in the usual time domain integral form:@ 3c c

@ œ 3 .>
"

G
c c

int
(
!

7

 (63)

with the integration time , so that the integration loop has enough time to7 ¦ G Vint &

settle close to the final offset value of , and consequently also .@ @c o

With k , and µF, the low frequency limit ( dB belowV œ %( G œ $Þ$ $& H int

pass band) is about Hz. This is enough for the settling speed of the loop, but with a"
large sub woofer the very low frequency rumble and acoustic feedback may still be

amplified enough to pose problems. What is needed is an additional high pass filter of

high order to let pass all above 16Hz unaffected, but cut sharply everything below.

The High Pass Filter

The advantage of a separate HPF is that it can be tailored to user’s needs

adding capacitors in parallel by a 3-way rotary switch, or bypassed completely. For this
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task we use an active third order high pass filter as shown in , a configurationFig.19

known in filter theory as the with a cut off frequency of, say, 10Hz,Sallen–Key type, 

and an attenuation slope of dB  below the cut off.") Î#0

C11 C13

R13

C12 A
f

o

R11

R12

1

2

3

Fig.19: A third order high pass filter of the  type.Sallen–Key

The filter transfer function is obtained from the following node equations:

at : (64)@ œ 
@  @ @  @ @

" "

=G =G
V

"
" " # "

"" "#

""

o

at : (65)@ œ 
@  @ @  @ @  @

" "

=G =G
V

#
" # # $ #

"# "$

"#

f

at : (66)@ œ
@  @ @

"

=G
V

$
# $ $

"$

"$

For a unity gain non-inverting amplifier . First we substitute  with  in (66)@ ¸ @ @ @$ $f f

and (65), then express  from (66), and replace  with its expression in (65), then@ @# #

find  from (65), and replace  in (64) with that. In that order we obtain:@ @" "

@ œ @  "
"

=G V
#

"$ "$
fŒ  (67)

@ œ @   "  "
" " G

= G V G V =G V G
" #

"# "# "$ "$ "$ "$ "#

"$
f” •Œ  (68)

 œ @   "@
" " G

= G V G V G V = G V G V G
o f” Œ $ #

"" "" "# "# "$ "$ "# "# "$ "$ ""

"#

   "    "   "
" G " G G "

= G V G V G =G V G G =G V#
"" "" "$ "$ "# "$ "$ "" "# "" ""

"$ "$ "$Œ  Œ  •
(69)

From (69) we can express the transfer function . In addition, from filter@ Î@f o

theory, specifically the Sallen–Key configuration such as in , we know that theFig.19

sensitivity to component variations is minimized if the serial elements are made equal,

so . With this we rewrite (69) as:G œ G œ G œ G"" "# "#
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@ "

@
œ

" # " " " $ "

= G V V V = G V V V =G V V
     "

f

o

$ $ # #
"" "# "$ "$ "# "" "$ ""

Œ  Œ    (70)

Finally, by multiplying both the numerator and the denominator by , and with a little=$

regrouping we obtain:

@ =

@
œ

=  =   =  
" $ " # " " "

G V V G V V V G V V V

f

o

$

$ #

"$ "" "$ "# "" "" "# "$
# $Œ  Œ  (71)

At high frequencies the term  dominates, so the filter has unity gain. At low= Î=$ $

frequencies the resonant frequency is determined by the last term in the denominator:

=!
"" "# "$

œ
" "

G V V V
Ê$ (72)

It is of course possible to set also the three resistor values equal, for simplicity, and

obtain the so called critically damped response. However the transition from pass band

to the attenuation slope towards low frequencies is very gradual in that case, and we

would rather have a steeper transition, with greater attenuation of very low

frequencies. As most turntables have their mechanical resonance and the dominant

rumble spectrum within 2–5Hz, we want to suppers 5Hz considerably.

The sharpest transition is offered by the Chebyshev family of filters. However,

a sharp cutoff also means a large phase jump at , and therefore a large derivative=!
7 : =e œ . Î. , the envelope time delay. And if the frequencies near the resonance pass

through the system with a delay larger than for the rest of the spectrum, long

oscillations occur at the resonance at every fast signal transition. The Bessel family of

filters offers the best compromise in this respect, but at the expense of a very gradual

pass-band to stop-band transition. The Butterworth filter family has a maximally flat

magnitude and a steeper stop-band transition, but also a longer ringing in the time

domain. Note however that ringing at subsonic frequency (near 10Hz) will be less

problematic than at the high end of the spectrum, mainly because of the cutoff

inherently present in any loudspeaker system, even those with very large subwoofers.

But also the rest of the amplification chain will have additional AC coupling at various

stages to help. So let us calculate the system response with Bessel and Butterworth

poles, and then decide which to implement in the system.

The values of Bessel poles for a third order system, normalized to the angular

frequency rad  (see  for details) are:=n œ " Î= Appendix 4

 = œ "Þ!%(%  4!Þ***$$

 = œ "Þ!%(%  4!Þ***$#

 (73)= œ "Þ$##("

However those values are given for a low-pass system. For a high-pass system

we must first invert the pole values, . Then in order to obtain a 1 Hz cut off we"Î= !i

must multiply the inverted poles by rad s. We then set  to some= 1! œ # "! Î G
convenient value, and solve a third order equation for the values of  (seeV""ß"#ß"$

Appendix 4). However, a large  requires low values of , lowering the inputG V
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impedance of the filter, which will attenuate the signal because of the presence of V&

after the RIAA amplifier. 330 nF and 47 k  represent a good choice.G œ V œ"" H

For the 3 -order Bessel high pass filter system, the resistors are related asrd

V À V À V œ " À !Þ( À $Þ* G œ $$!"" "# "$ . By selecting nF, the resistor values are

V œ %( V œ $$ V œ ")! V"" "# "$ "#k , k , k . If necessary,  can be decreased andH H H
V"$ increased in proportion, or the other way round, in order to trim the response just

above the cut off frequency. This may or may not be necessary, depending on the –U
factor of the integrator loop and its peaking at very low frequencies.

For the Butterworth response the pole values are:

 = œ !Þ&!!!  4!Þ)''!$

 = œ !Þ&!!!  4!Þ)''!#

 (74)= œ "Þ!!!!"

Because Butterworth poles are on the unit circle, the inverted values for the high-pass

response are the same. Of course the multiplication by rad s is necessary to= 1! œ # "! Î
obtain the 10Hz cut off. The calculation of component values then follows the same

procedure as for the Bessel poles. The values obtained are optimized to nFG œ ##!
and are: k , k , k . See  for details.V œ &' V œ ## V œ $*!"" "# "$H H H Appendix 4

In  we compare the frequency response of the Bessel and ButterworthFig.20

3 -order high pass filters having a 10Hz cut off, together with the 1st-order filterrd

resulting from the integrator DC loop correction, which cuts off at about 1Hz.
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Fig.20: Comparison of the frequency responses of 3 -order Bessel and Butterworth highrd

pass filters, together with the effective 1Hz cut off owed to the integrator DC correction

loop. The Bessel filter attenuates 16Hz by about dB, the Butterworth by only dB." !Þ#

Note that the filter input impedance in the pass band is only slightly less than

V V"" "#ß"$ alone, because of feedback bootstrapping of . Therefore the loading of the

V Gf f  low pass filter (51) remains low and does not alter the total pass band gain.
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We are now able to evaluate the flatness of the response of the whole system

by simply multiplying all the relevant transfer functions, as in (40), but with the

integrator and the high pass filter included. In  we have plotted the response atFig.14

the RIAA equalization amplifier, multiplied by the inverse RIAA function, the response

of the cartridge network, and the low pass filter output. Here in  we plot theFig.21

same total response with the influence of the integrator for DC offset removal, and the

3 -order Butterworth high pass filter at 10Hz.rd
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Fig.21: The complete system response, including the DC integration loop, a Butterworth

3 -order high-pass filter, and the 1 -order low-pass filter at 50 kHz. The high frequencyrd st

response is dominated by the cartridge’s internal electrical impedance and its loading,

which is a 2 -order low-pass system, resulting in a 3 -order response at highnd rd

frequencies.

And in  we use a vertical scale of 4 dB in total in order to expose theFig.22

pass-band details. The response is flat within 0.1 dB from 16Hz to 16 kHz.
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Fig.22: Same as in Fig.21, but with only 4 dB vertical scale to expose the passband

details. The response is within 0.2 dB from 16Hz to 16 kHz, with 3 dB at 10Hz and 29
kHz.

The theoretically derived response has been checked numerically by using

Matlab (by The MathWorks), see the code in . Of course MathCad (byAppendix 5
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PTC), or Mathematica (by Wolfram Research), or other tools can be used equally well.

It is a good practice to also check the calculations independently by using one of the

many circuit simulation computer programmes, some are available freely online. Most

of those programmes offer the possibility to vary the components within the expected

tolerance range and use the Monte Carlo statistical analysis to evaluate the variations

in response.

Readers who want to build the circuit for their own use, or in limited

quantities, can measure and select the components to 0.1% tolerance from a bunch of

1% parts using a good -meter. Note however that using a simple hand held 3VPG "
#

digit multimeter for such measurement will not guarantee a precision better than 0.5%

± 1 digit. Use of at least 4  digit measuring equipment is recommended."
#

Noise Analysis

Noise is a random quantum phenomenon and fundamentally unpredictable.

However, during the last 150 years a monumental amount of theoretical and

experimental work has been accomplished, allowing some clever thermodynamic and

statistical approximations to be used, resulting in relatively simple relations by which

the circuit noise behaviour can be assessed easily.

In the old days of tubes valves and later discrete transistor amplifiers theÎ
circuit thermal noise had to be optimized by carefully setting the input devices’

working point and bias current, because of the different dependence of the noise

current and noise voltage with bias. In modern low noise integrated circuits the current

noise component is low and the noise voltage dominates. There is not much we can do

about the circuit noise besides keeping all the impedances reasonably low.

The choice of the cartridge will probably be made on its mechanical and

electrical characteristics, but for the system noise performance we must consider also

the sensitivity and the electrical impedance of the cartridge. Thermal noise voltage is

proportional to the square root of the real part of the cartridge impedance, its load, and

the bandwidth, so low impedance cartridges are preferred. However, the cartridge

sensitivity is also a function of its impedance (the number of turns of the coil and the

coil resistance), as well as the magnetic field strength. Thus a low impedance cartridge

with a good magnet can be as sensitive as a higher impedance one with a poor magnet.

The noise evaluation of the system starts from the well known thermal noise

relation of the signal source, the noise voltage being proportional to the square root of

the cartridge impedance and bandwidth:

@ œ %5 XV 0nc B
È

)? (75)

where:

 × VAs K  .................  Boltzmann thermal energy constantœ "Þ$)!( "! Î5B
#$

 K  ..........................................  nominal ambient absolute temperatureœ #*$X
   ........................................  thermal real part of the impedanceœ d ^V) e fc
   ....................................... bandwidth of interest (20 kHz in audio)œ 0  00? H L

But (75) is valid only if  is independent of frequency. Because only the realV)

part of the impedance generates thermal noise, and because the impedance varies with
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frequency, we must first calculate the equivalent impedance seen by the amplifier’s

input, and then evaluate its real part within the audio spectrum. This gives the noise

voltage spectral density, which is a function of frequency.

The total impedance seen by the amplifier’s input is the cartridge internal

impedance in parallel with its load impedance:

^ 4 œ
"

" "

V  4 P V
 4 G 

c

pu pu b
b

a b=
=

=
(76)

We want to express this as the sum of its real and imaginary part. We first get rid of

the double fractions:

^ 4 œ
V V  4 P

V  V  4 P 4 G V  "
c

b pu pu

b pu pu b b

a b a ba ba b=
=

= =
(77)

Multiply the terms in the denominator:

^ 4 œ
V V  4 P

V V  G V P  4 G V V  P
c

b pu pu

b pu b b pu b b pu pu

a b a ba b=
=

= =#
(78)

Rationalize the denominator by multiplying both the numerator and the denominator by

the complex conjugate of the denominator:

 (79)^ 4 œ
V V  4 P V V  G V P  4 G V V  P

V V  G V P  G V V  P
c

b pu pu b pu b b pu b b pu pu

b pu b b pu b b pu pu

a b a bc da b
a b a b=

= = =

= =

#

# ## #

We perform the multiplications in the numerator, cancel the terms with opposite sign,

and with some reordering and normalization we group the real and imaginary parts:

^ 4 œ V
"  G P   G V   4 "  G P  G V

"  G P   G V 
c pu

b pu b pu b pu b pu

b pu b pu

a b Š ‹ ’ “a b
Š ‹ Š ‹=

= = = =

= =

# #V P P P

V V V V

# V P

V V

# #

pu pu pu pu

b pu b pu

pu pu

b b

= = =

=

(80)

The real part of the impedance is then:

d ^ 4 œ V
"  G P   G V 

"  G P   G V 
e fa b Š ‹

Š ‹ Š ‹c pu

b pu b pu

b pu b pu

=
= =

= =

# V P P

V V V

# V P

V V

# #

pu pu pu

b bpu

pu pu

b b

= =

=
(81)

Fig.23 shows the real part of the input impedance as the function of frequency,

after (81) in comparison with the absolute value of (80). At low frequencies the value

is approximately  (600 ), then rises owed to the inductance  to nearly V P Vpu pu bH

(47 k ) at the resonant frequency , and finally falls back owed to .H 1"Î# GÈG Pb pu b

Because of this, the voltage noise spectral density follows a similar function:

/ œ œ %5 Xd ^
@

0
n B c

nc
^ È È e f

?
(82)

and with the assumed values for an average cartridge and its nominal load the

spectrum is shown in . It goes from about 3 to about 27 nV  at resonance.Fig.24 ÎÈHz
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Fig.23: The real part of the input impedance compared to the absolute value.
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     Fig.24: Thermal noise voltage spectral density is proportional to {Z } , ( ).È a bd 4c = 82

The thermal noise of the RIAA feedback network must also be taken into

account, however the feedback thermal impedance is equal to the real part of (39) with

V V V% $ added, and all in parallel with . Because of the low value of  the thermal noise3

of the feedback network may be approximated by  alone within the audio band (itV$

falls eventually to  beyond 50 kHz):V llV$ %

/ œ %5 XV œ "Þ) În BV $
È nV (83)ÈHz

In addition to the thermal noise of the signal source impedance and its load, the

amplifier’s input voltage noise and current must be taken into account.

The amplifier’s input noise current must be multiplied by the absolute value of

the input impedance (not juts the real part!) in order to obtain the equivalent noise

voltage, therefore the absolute value of equation (80) must be used for :l^ lc

/ œ 3 l^ 4 ln n c3^ a b= (84)
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Likewise, a similar input noise current flows through the feedback network, so

it should be multiplied by  (simplified!) to obtain the equivalent noise voltage:V$

/ œ 3 Vn n3V $ (85)

However, modern integrated circuit amplifiers have very low input noise

current, so even if  increases with frequency the equivalent voltage noise is relatively^c
low. As an example, the good old NE5534 has a typical input noise current 2.5

pA  at 30Hz, and 0.6 pA  at 1 kHz and above. On the other hand its inputÎ ÎÈ ÈHz Hz

noise voltage is about 7 nV  at 30Hz, and 4 nV  at 1 kHz. To develop aÎ ÎÈ ÈHz Hz

comparable voltage noise, the input noise current should flow through a resistance of 8

k . Therefore the input noise current will be significant only above some 4 kHz.H
Similar, maybe slightly better results will be obtained with the OP37.

But check the OPA627, OPA637, or the latest OPA827, the voltage noise is

similar, 4 nV , but the current noise is 500× lower, about 2.2 fA ./ œ Î ÎnE
È ÈHz Hz

This makes the influence of the current noise insignificant, more so because the

different noise components are not correlated, and must be added by power:

/ œ /  /  /  /nTi n n n n
É ^ V

# # # #
3 E (86)

Note that both the amplifier input noise current and input noise voltage

increase towards very low frequencies (owed to the so called  noise component)"Î0
and towards high frequencies (because of the excess noise component), and both

influences are outside the audio band. But because RIAA equalization enhances low

frequencies, and because some amplifiers have a relatively high corner of the "Î0
spectrum, it might be important to model the amplifier voltage noise more accurately.

With  being the corner frequency below which the noise starts to increase from the0c
level at 1 kHz, the spectrum is modeled by:

/ œ / "
0  0

0
n n

c
E Ea bkHz (87)

The corner frequency must be found by adjustment from amplifier’s data, since

most manufacturers specify only the effective noise at 1 kHz and 30Hz. Usually  will0c
be between 10 and 100Hz; here we use 50Hz. In addition, excess noise increases0 œc
the amplifier noise in proportion to , but its corner frequency is often at 10 kHz orÈ0

above, thus outside of the audio range.

For the output noise spectrum, we multiply the spectrum of the total input

noise  by system gain  (17) and low pass (51) and high pass (71) filters:/ K =nTi $a b
/ œ / K = N = N =nTo nTi B$ " $a b a b a b (88)

Since RIAA equalization decreases with increasing frequency, the output noise will be

substantially lower. The output spectral noise density is shown in , along withFig.25

the individual input components and the total input noise spectral density.

To obtain the effective (root-mean-square, rms) noise voltage form the spectral

density, the output spectral power (voltage squared!) density function must be

integrated in frequency within the audio band, from Hz to kHz, and0 œ "' 0 œ #!L H

then the square root is taken to obtain the effective noise voltage:
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@ œ / .0no no
# #

0

0(
L

H

(89)

@ œ @no no
È # (90)

Using the OPA827 data, the effective output noise voltage is about 71 µV .rms

Considering the nominal input signal level of 5mV with the gain of about 50× gives

250mV, so the signal to noise ratio is about 71 dB. By using a better amplifier with the

input voltage noise density of just 2 nV , about 74 dB can be achieved, andÎÈHz
further amplifier noise reduction will have no effect. This is because the input noise is

dominated by the cartridge thermal noise. To achieve low noise a low impedance and

high sensitivity cartridge is always preferred.
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Fig.25: Noise spectral density:  is the thermal noise of the real part of the/nZpu
impedance of the cartridge and its load;  is the amplifier input voltage noise. The/nAin
amplifier current noise is not shown because it is far too low.  is the feedback/nV$

network thermal impedance, simplified to just . The total input equivalent noiseV$

density is denoted by . The output noise density  is equal to  multiplied by/ / /nTi nTout nTi

the gain , the low-pass filter  and the high-pass filter .K = N = N =$ " $a b a b a b
For example, the Grado Prestige Silver or Gold series can take the noise down

by about 8 dB, mainly owed to its very low inductance ( 40mH) and highP œpu

sensitivity (5mV at 5 cm s at 1 kHz). With such a cartridge it makes sense usingÎ
amplifiers with less than 2 nV , achieving 26 µVrms, and a S/N ratio ofÎ @ œÈHz no

almost 80 dB (see the example in  and ).Fig.27 Fig.28

Note also that the actual dynamic range will often be greater than the S N ratioÎ
by at least 10 dB with high quality recordings. But note also that the vinyl noise will

dominate, even with a poor cartridge and amplifier. Sadly, in too many cases with high
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quality vinyl the analog tape recorder hiss will clearly be heard well above the vinyl

noise! Therefore for a really low noise consider a CD instead of the LP.

See  for the numerical integration of the noise spectrum in Matlab code.Appendix 5

A Couple of Interesting Variations

The conventional circuit configurations ( ) are not ideal, but are goodFig.3,4,5

compromises. In the past, with the amplifier’s open loop gain and bandwidth low, the

input impedance of the amplifier would present an additional load to the signal source,

in particular with circuits of  where the feedback varies with frequency. ModernFig.4,5

amplifiers have adequate gain and bandwidth, so this became a non-issue.

Nevertheless, non-inverting circuit configurations may suffer from input

impedance asymmetry problems, since the feedback impedance is usually low and

nearly constant (~ ), whilst the signal input impedance varies widely. The amplifierV$

differential input actually senses a very small differential signal floating on a relatively

large common mode signal, and under such conditions the impedance asymmetry may

result in a certain degree of nonlinearity. In this application the input signal causing the

common mode error is small, about 25mV  nominal at 10 kHz, but the puristsrms

among us may have their objections anyway. However, the impedance asymmetry

allows another distortion ‘mechanism’ to appear, and it gets worse in phonograph

preamplifiers because the signal increases with frequency. Since the cartridge

impedance also increases with frequency, the input transistor internal capacitance

(either from collector to base in bipolar junction transistors or from drain to gate in

field effect transistors) changes nonlinearly with the signal, and the Miller effect (see

Appendix 2) further amplifies this by the gain of the input stage, resulting in rather high

intermodulation distortion (see  for details).Appendix 3

Such errors can be reduced by using a very high impedance current source to

provide bias for the input differential stage, and the cascode configuration to get rid of

the Miller effect at the input, but this does not eliminate the distortion completely.

The only way to get rid of common mode and dynamic nonlinearity errors is to

use an inverting amplifier configuration, but ordinary inverting amplifiers have noise

problems, because the input impedance is large (47 k ) throughout the spectrum, notH
just at the cartridge resonance, and to provide enough inverting gain the feedback

impedance must be suitably larger, and large impedance means large thermal noise and

large amplifier current noise components.

But if the signal source can be made floating,  shows an attractiveFig.26

inverting amplifier configuration having the advantages of both the non-inverting and

inverting configuration, and disadvantages of none. The only problem with the floating

source is that cartridges usually have their grounding and shielding tied to the left

channel ground. This means that a rewiring of both the cartridge and the tone arm is

necessary. Not many serious audiophiles will be prepared to perform such a delicate

operation on their expensive equipment (with a possible exception of a few complete

lunatics, like myself ;o).

Otherwise, the circuit components are the same in both cases, so there will be

no change in the design philosophy. If you are apt using a sharp scalpel, and have a

fine soldering iron, and other precision tools, a steady hand and good eye sight, you
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might give it a try. In my case it worked perfectly, but to be honest I did not notice any

dramatic changes in sound quality, most probably because the distortion of the basic

circuit was already well below the distortion on the vinyl.
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Fig.26: Inverting configuration employing a floating signal source reduces input stage distortion.

For highest quality cartridges with low internal impedance and high sensitivity

there is another circuit version is worth considering. It uses discrete jFETs for the

front-end, and ICs for the rest of the circuitry, as shown below.

Today’s best IC audio amplifiers in terms of both noise and distortion are

probably the LME series (developed by National Semiconductor, now owned by Texas

Instruments). In particular, the LME49990 offers 0.9 nV  input voltage noise,ÎÈHz
1.8 pA  input current noise, along with a distortion figure with an impressiveÎÈHz
number of zeros before the first significant digit. If your favourite cartridge has high

electrical impedance, the current noise component (as well as the input bias current)

may still be too high for you, so the already mentioned OPA827, or the OPA1641, or

the LME49880, all with a jFET input, and consequently negligible current noise, will

be the natural choice, even if their voltage noise is slightly higher, about 4–5 nVÎÈHz
between 100Hz and 10 kHz.

Fig.27 shows a way around this dilemma if we consider using discrete or

integrated pairs of jFETs for the amplifier input stage.

The LSK170 is a single, and LSK389 a dual low noise jFET (both produced by

Linear Integrated Systems; the devices are production process improved versions of

the well known 2SK170 and 2SK389), with the input voltage noise of 0.9 nV  atÎÈHz
1 kHz, and 2.5 nV  at 10Hz, and the input current noise down into the fAÎ ÎÈ ÈHz Hz

level. A differential pair has a total noise voltage greater by .È#

With these jFETs used to form the input differential amplifier stage, their

output can be connected to an ordinary NE5534 in place of its own input stage, itself

being disabled by connecting the input pins 2 and 3 to the negative supply rail. The

input to the second stage is available at pins 1 and 8 of the NE5534, which are

ordinarily used for offset correction.

So we have a composite amplifier with extremely low input noise, very low

distortion, a 600  load drive capability, and the circuit is easy to build. TheH
connection, shown in , appeared in a data sheet catalogue of Siliconix jFETs inFig.27

the late 1970s, using a 2N5911 dual jFET at that time.
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Fig.27: Composite jFET and bipolar amplifier.

Fig.28 Fig.27 shows the noise performance of the circuit in , using the Grado

Prestige Silver cartridge. Compare that to , where the noise of a OPA827 opampFig.25

with our typical average cartridge is shown.
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Fig.28: Noise is much lower using a Grado Prestige Silver with a composite amplifier with jFETs.
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Note that jFETs, in contrast to bipolar transistors, exhibit their optimal noise

performance at a relatively high drain current, about 2mA according to LSK389

specifications. This means that drain resistors  of relatively low value must be addedVd
externally, since the internal resistors are 12 k  (as found in NE5534 specifications).H
The differential amplifier bias current I  is set by the constant current source, itselfq

realized by another pair of cascode connected jFETs with a source resistor  whichVs
can be adjusted for optimal bias current. And instead of a simple differential pair, a

differential cascode can be used to further reduce distortion and increase the input

impedance and bandwidth. See  for details.Appendix 3

The LSK389 pair is relatively well matched, so the input differential stage will

have a good common mode rejection. Nevertheless, as with any jFET differential

stage, the input offset can be as large as 10mV, so a proper DC reduction as described

before is indispensable. Likewise, proper power supply decoupling is obligatory, given

the low signal levels. Also in the case of using LSK389, there are two substrate pins on

the chip, which must be connected to a suitable negative point in the circuit. Note that

the LSK389 have relatively low , typically in the ~300mV range, so a rather lowZgsoff
resistor value is needed for  to obtain a 1mA current per FET.Vs

As shown in , with such an amplifier very low input voltage noise can beFig.28

achieved, lower than the thermal noise of the ~200 Ohm of . Such an amplifier isV$

ideal for low impedance cartridges, like the Grado Prestige Silver ( mH,P œ %!pu

V œ %(& Gpu bH). Low inductance requires lower  for proper compensation and a low

V G œb b for resonance damping. So with 120 pF (which includes a 100 pF cable) and

V œ #(b k  the impedance peaking is low and is shifted up away from the critical 2–5H
kHz region where the human ear is most sensitive. The resulting output noise voltage

is around µV , giving a S N ratio of 81 dB.## Îrms

Fig.29 shows a further advantage of the low signal source impedance: the very

high bandwidth extension up to 60 kHz.
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Fig.29: A cartridge like Grado Prestige Silver with low inductance extends the bandwidth to 60 kHz.

To conclude, readers who like to experiment, or want to evaluate different

cartridges and system setups, might want to build this adaptable circuit, shown in
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Fig.30, which uses a triple switch to configure the circuit for accepting either a floating

or a grounded signal source, as well as vary the input impedance to suit different

cartridges.

The input impedance components  and  are broken into a fixed ( , )G V G Vb b b b! !

and variable part ( , ), the latter preferably adjustable in steps by jumpers or DILG Vbv bv

binary switches. Note that the cable capacitance will be slightly higher in the grounded

configuration, compared to the floating configuration, because of the cable shield, but

with a low capacitance cable of 100 pF m, and a 50-60 cm length, it will beÎ
manageable.
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Fig.30: A triple switch allows using a floating or a grounded signal source.

A differential output amplifier may be in interesting addition for professional

audio use. Differential signaling is used to avoid ground loops and cancel any supply

currents flowing between various ground points in form of a common mode signal.

Here is a simple circuit which converts a single-ended input from the high pass filter

into a differential signal. The circuit uses either an LME49725 or an OPA1632 fully

differential amplifier, both capable of driving a 600  line. The only difference betweenH
the two is the connection of the chip thermal pad, see their data sheet. The LME may

be preferred because its quiescent current is lower, only 5mA. But other similar

amplifiers can be used as well. All that is required at the receiving end is a differential

to single ended converter in form of a usual opamp differential amplifier.
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Fig.31: Differential output amplifier; can be LME49725, OPA1632, or similar.
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Appendix 1: A Zero-Pole Network for the Encoding Circuit Model

In circuit theory the transfer function of a network is expressed in a form of a

ratio of two polynomials, with the complex frequency  as the independent variable.=
The transfer function zero is the particular value of the independent variable at which

the value of the numerator polynomial is zero. Similarly, the transfer function pole is

that particular value of the independent variable for which the value of the denominator

polynomial is zero (and hence the transfer function value is ). In general, zeros„_
are associated with a phase lead, and poles with a phase lag.  shows a simpleFig.A1.1

network suitable for exemplary analysis.

R1

C1

R2

i o

Fig.A1.1: Zero-Pole Network

If the voltage at the input  is non-zero, there will be a current through the@i
network. In accordance with the Kirchhoff law the sum of the currents in the node @o
will be zero, so we can equate the incoming and outgoing current:

@  @ @
"

=G 
"

V

œ
V

i o o

"
"

#
(A1.1)

We want to solve this for the ratio , which is the network transfer function. So we@ Î@o i

first try to get rid of the multiple fractions:

@  @ @
V

=G V  "

œ
V

i o o

"

" "

#
(A1.2)

a ba b@  @ =G V  " œ @
V

V
i o o" "

"

#
(A1.3)

We separate the voltages:

@ =G V  "  œ @ =G V  "
V

V
o iŒ  a b" " " "

"

#
(A1.4)

and we obtain the transfer function:

@ =G V  "

@
œ

=G V  " 
V
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i

" "

" "
"

#

(A1.5)
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The transfer function is a ratio of two polynomials of the first order in . But from=
(A1.5) it is difficult to get an insight, we want an expression like the general form:

J = œ E
=  D

=  :
a b

Here  is a frequency independent gain or attenuation,  is the zero, and  is the pole.E D :
We want to arrange the expression (A1.5) in a similar way. So we divide both the

numerator and the denominator by :G V" "

@

@
œ

= 
"

G V

=  " 
" V

G V V

o

i

" "

" " #

"Œ  (A1.6)

Then the zero is:

D œ 
"

G V" "
(A1.7)

and the pole is:

: œ  " 
" V

G V V" " #

"Œ  (A1.8)

Alternatively, the time constant corresponding to the zero is:

7z œ G V" " (A1.9)

and the time constant corresponding to the pole is:

7p œ G V
V

V V
" "

#

" #
(A1.10)

We first choose the value of the capacitor because capacitors are available in fewer

values and tolerance. We select:

G œ $$" nF (A1.11)

From (A1.9) we obtain :V"

V œ *'%&&" H (A1.12)

Then from the (A1.10) we obtain :V#

V œ œ V
V

G V  
# "

"

" "

7 7

7 7 7

p p

p z p

(A1.13)

The value of  is:V#

V œ "!("(# H (A1.14)

Note that the resistance ratio is exactly:

V ÎV œ *Þ!" # (A1.15)

because from (A1.9) and (A1.10) 3183 µs/318.3 µs .7 7z pÎ œ œ V V ÎVa b" # #
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In a similar manner we calculate the second network values for the 75 µs7z œ
and 3.18 µs time constants. By selecting :7p œ G#

G œ "!# nF (A1.16)

the values of resistors obtained are:

V œ (&!!$ H (A1.17)

V œ $$#Þ%")% H (A1.18)
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Fig.A1.2: The responses of the zero-pole network of  for the two characteristicFig.A1.1

time constant pairs (red and blue), with the (optional) high frequency pole of the cutter

driving amplifier (green). The combined responses give the realistic RIAA encoding

curve.

In accordance with the relations above, we can model the RIAA encoding

standard to serve as the reference circuit for checking the accuracy of the equalization

network. In a circuit simulator programme we can simply use two networks as in

Fig.A1.1 and separate them by dependent ViVo generators (voltage in, voltage out).

Fig.A1.3 shows the configuration (with optional  and ). Note that the gain of theV G& $

I" dependent generator is set equal to the second stage attenuation at DC,

E œ "  V ÎV œ #$Þ&'#a b$ % , bringing the system gain at 1kHz very close to unity.
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Fig.A1.3: Model of the RIAA encode network for circuit simulation testing.
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 With the circuit in  an input signal with a 5mV amplitude simulatesFig.A1.3

the standard 5 cm s groove modulation reference level. In he combinedÎ Fig.A1.4 t

frequency response of all the sections is shown:
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Fig.A1.4: Frequency response of the model of the RIAA encode network of .Fig.A1.3

However, to test an actual RIAA amplifier in hardware we need a completely

passive realization.  shows the configuration which provides a responseFig.A1.5

identical to the response above. The circuit attenuates the signal  by about 200× at@g
1kHz, so 1V (0.5V at ) gives 5mV at . The circuit has a low output impedance at@ @" %

@$, going from 100  at l.f. to 76  at h.f., so thermal noise will be low (<0.26 µVH H rms

for 50 kHz bandwidth), and the cartridge thermal noise will be dominant. A suitable

cartridge impedance (  and ) can be added for a realistic test. Subtract 76V Ppu pu H

from  for correct high frequency damping.  must be wound on a ferrite potV Ppu pu

core, use a pot with a small air gap (~0.1mm) for good h.f. response.
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Fig.A1.5: Model of the passive RIAA encode network for testing an actual

equalizer.  was subtracted from  to get a correct response at highV llV œ #& Vg t H %

frequencies.  optionally limits the bandwidth at 400 kHz. Attenuation at 1 kHz isG$

about 200×. Optionally,  and  model the cartridge impedance.V Ppu pu
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Appendix 2: Amplifier Gain and Bandwidth Analysis

We want to justify certain simplifications used in the circuit analysis regarding

the difference between the real and ideal amplifier performance.  shows anFig.A2.1

amplifier with a differential input and some negative feedback (part of the output

voltage fed to the inverting input):

A(s)
o

n

p

g

β

Fig.A2.1: A general differential amplifier model with feedback.

We express the output voltage  of a differential amplifier as a function of the@o
input voltage difference , and the gain , itself a function of the complex@  @ Ep n

frequency :=

@ œ @  @ E =o p na b a b (A2.1)

The gain  at DC (or at very low frequencies) has a value :E = Ea b !

E ! œ Ea b ! (A2.2)

At higher frequencies there is a cut off at a frequency where the output power

is only  of the power at very low frequencies. Since power is proportional to"Î#
voltage squared, for the output voltage this represents a  ratio (this is often being"ÎÈ#

referred to as the 3 dB point, which is allowed to be expressed in dB only if the load
impedance is independent of frequency, which is seldom the case).

The frequency at which this cut off occurs is determined by the dominant pole

=d. For simple amplifiers the pole is real and negative:

= œ  œ # 0d d d= 1 (A2.3)

This is because we associate the negative half of the complex plane with

passive components (energy loss), in contrast with the positive half, which represents

active components (energy generation). In actual amplifiers the dominant pole is often

determined internally by the effective input resistance of the second amplifying stage,

and the total capacitance at the same node:

=d œ
"

VG
(A2.4)

The capacitance is either a sum of stray capacitances of both interconnected

stages or is intentionally increased for stability reasons; more on stability later.

If all other poles are well above the frequency at which the amplifier ceases to

amplify, they will not influence the amplifier passband behaviour significantly. As is
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shown in nternally the amplifier can be modeled by three stages, with theFig.A2.2, i

first stage being a differential transconductance (current output) stage, the second is a

voltage gain stage and the third stage is a unity gain power buffer.

o

n

p

gm A2 1× 

i

RC

Fig.A2.2: Internal amplifier model. The differential transconductance (current

output) stage drives the voltage gain stage with its input impedance modeled by

the parallel  network, and the output is buffered by a unity gain power stage.VG

In accordance with this model, the total gain at DC must be a product of the

transconductance :gm by , and the voltage gain of the second stageV

E œ! gmV † E# (A2.5)

whilst the frequency dependence is owed to the current 3 œ gm p na b@  @  driving the

parallel  network:VG

@ œ 3 œ 3 œ 3V
"

=G  =  = 
" " "

V GV GV

" "

G GV
VG (A2.6)

Then the frequency dependence of the gain may be modeled mathematically by

a Cauchy polynomial of the first order:

J = œ
"

=  =
a b

d

(A2.7)

where  is the dominant pole (there are other poles at= œ  œ # 0 œ "ÎVGd d d= 1
much higher frequencies, often above the transition frequency , which  is the0T
frequency where the amplifier gain falls below unity, ).lE l œ "a b=T

But the DC gain of expression (A2.7) varies with , and we want the DC gain=d
to be set by  alone, whilst the frequency dependent part is determined by . WeE =! d

therefore normalize this expression by first evaluating it at DC ( ):= œ !

J ! œ œ
" "

!  = =
a b

d d

(A2.8)

and then take the ratio :J = ÎJ !a b a b
J = =

J ! =  =
œ œ

"

=  =
"

=

a ba b d

d

d

d

(A2.9)

As a result we have the same expression as in equation (A2.6).
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Now we can express the gain  by the frequency independent part  andE = Ea b !

the frequency dependent polynomial in :=

E = œ E
=

=  =
a b !

d

d

(A2.10)

Therefore the output voltage can be written as:

@ œ @  @ E
= 

o p n
d

d

a b !
=

=
(A2.11)

Note that this relation holds regardless of whether we are dealing with an

amplifier with no feedback (open loop) or with some negative feedback (closed loop).

The amplifier’s closed loop gain depends also on the feedback attenuation factor , by"
which the output voltage is attenuated and fed to the inverting input:

@ œ @n o" (A2.12)

By inserting this back into (A2.11) we have:

@ œ @  @ E
= 

o p o
d

d

a b"
=

=
! (A2.13)

By separating the voltage variables:

@ "  E œ @ E
=  = 

o p
d d

d d
Œ "

= =

= =
! ! (A2.14)

we can define the closed loop transfer function:

@

@
œ

E
= 

"  E
= 

o

p

d

d

d

d

!

!

=

=

"
=

=

(A2.15)

We get rid of the double fractions:

@

@ =  "  E
œ E

o d

p d
!

!

=

= "a b (A2.16)

and make the coefficients in the numerator and the denominator equal:

@ E "  E

@ "  E =  "  E
œ †

o d

p d

! !

! !" = "

= "a ba b (A2.17)

and we have the definition for the system DC gain and its frequency dependence. By

dividing the DC gain by  we have the following form, from which it will be easier toE!

recognize how the system response is affected by :E!

@ " "  E

@ =  "  E
œ †

"

E


o d

p d

!

!

!"

= "

= "

a ba b (A2.18)

With  very high, say,  or higher, the system cut off frequency is also very high:E "!!
&

= = "h dœ "  Ea b! (A2.19)
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and the system closed loop gain factor becomes:

E œ ¸
" "

"

E


c

!
"

"
(A2.20)

Fig.A2.3 shows the relations between the open and closed loop gain responses and the

loop feedback factor.

10
5

10
4

10
3

10
2

10
1

10
0

10
2

10
1

10
3

10
4

10
5

10
7

10
6

G
ai
n

f  [Hz]

|A(s)|

A0

A(s)
o

n

p

g

β

fd

fh

(s)

1
––— 
β| | 

|A(s) (s)β |
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Indeed, equations (A2.19) and (A2.20) tell us that the closed loop system gain

will be closely approximated by the factor  over a very wide frequency range if the"Î"
open loop gain is high enough. Alternatively, the same is true if the dominant pole can

be made high, however, this is a technological issue with many limiting factors.

There are of course secondary effects, and one of the most important is the

slew rate limiting, which was the most severe distortion mechanism in early integrated

circuits, and even in discrete power amplifiers. This mechanism is not immediately

obvious from the internal amplifier configuration of , yet it is fundamentallyFig.A2.2

limited by that configuration.  shows a conventional input differential stageFig.A2.4

employing bipolar transistors. What is not explicitly shown in  is that theFig.A2.2

maximum current available from the gm stage is limited, . The reason forl3  3 l Ÿ 3" # !

this is the configuration of the input differential amplifier and its requirements. To

understand this we must take a close look at .Fig.A2.4

The transistors  and  form the differential amplifier. Its quiescent currentU U" #

bias is provided by the constant current source made by  and . The transistors U U U$ % &

and  form a current mirror, which provides symmetrical output current to theU'

second stage, which consists of the  and a current source .U 3( #
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U U% $ provides strong feedback around , thus keeping its collector current

constant, and independent of the common mode signal . Because of this,a b@  @ Î#p n

the impedance seen by the emitters of  and  is very high, allowing the emitters toU U" #

share the bias current seamlessly, thus keeping low the error of the difference of the

collector currents, . This difference drives the second stage amplifier .3  3 Uc c" # (

Q
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Q
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Q
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Q
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Q
5 Q
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Q
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– 
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1× 

Cc

Fig.A2.4: A simplified schematic diagramme of a conventional differential amplifier.

Note that  is in the feedback of , which inverts the signal. For every mVG Uc (

of accumulated charge on the base side there are some 200mV on the collector side
of the capacitor , and all this charge must be supplied by . Therefore the G 3c c? Miller

effect will increase the effective value of the loading capacitance by the  gain (oftenU(

between 200× and 500×).

It is obvious that constant current is necessary for low differential error. But it

is also obvious that the capacitance  slows the response. If the input voltageGc
difference changes too quickly, the output voltage will not follow as quickly, and the

result is momentary loss of feedback and saturation of the input differential amplifier.

In such conditions one transistor of the  pair will be fully open and the otherU" #,

closed, thus the current difference becomes equal to  and as a result the  will cause3 G! c

the voltage at the base of  to increase linearly with time, instead of following theU(

input signal variations.

The frequency at which the output cannot follow the input depends on the

input signal amplitude, as we are going to show. But the most important question is:

can an RIAA amplifier (gain decreasing with increasing frequency!) suffer from slew

rate problems?

The input resistance at the base of  is equal to the emitter resistance U V( #e

multiplied by the  gain  (  is equal to the  current gain):U E  " E U( # # (a b
V œ V E  "b e# #a b (A2.21)

The  collector voltage is equal to , and if the stage gain is , the  base voltageU @ E U( # (o

must be (  inverts the signal!):U(

@ œ
@

E
b

o

#
(A2.22)

For the difference current of frequency  we can write:=
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?3 = œ 
@ @  @

V "

=G

c
b b o

b

c

a b (A2.23)

If we assume  and , the effective base resistance  will beV œ "!! E œ #!! Ve b# #H
about 20 k . With a power supply of 15V, the maximum output voltage  will beH @o
close to some 13V, and with  the base voltage  would change by onlyE œ #!! @# b

0.065V. The base current will then be 3 µA. Now the input differential3 œ @ ÎV ¸b b b

stage will have minimum noise if biased by  of about 200 µA, and . This3 3 œ 3! ? cmax 0

means that the majority of input current will flow through the compensating capacitor

G Vc b, and the influence of  can be neglected. So we can approximate (A2.23) with:

3 œ
@  @ E

"

=G

!
#b b

c

(A2.24)

First we equate the voltages:

3

=G
œ @ "  E

!
#

c
ba b (A2.25)

and we can express the input admittance:

3

@
œ =G "  E

!
#

b
ca b (A2.26)

Obviously, the effective input admittance is being increased by the system gain factor.

This increase was first explained by  ( , Dependence of theJohn M. Miller J.M. Miller

input impedance of a three-electrode vacuum tube upon the load in the plate circuit,

Scientific Papers of the Bureau of Standards, 15(351):367–385, USA, 1920), so the

effect and the equivalent capacitance  are named in his honour:GM

G œ G "  EM ca b# (A2.27)

Since the frequency operator is equivalent to a time differential, ,= œ 4 .Î.>a b
we can also write this as:

3 .@

G "  E .>
œ

!

#c

ba b (A2.28)

The derivative  is the slew rate at the base of . Of course, the output.@ Î.> Ub (

slew rate  is greater  times:.@ Î.> Eo #

.@ @

.> .>
œ E

o b
# (A2.29)

By assuming a sine wave of amplitude  and frequency , the output signal is:Z =

@ œ Z >o sin= (A2.30)

The maximal slope of such a signal is obtained by a time differentiation:

.@

.>
œ Z >

o
= =cos (A2.31)
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and since the cosine function has a maximum of 1 at , the slew rate is both> œ !
amplitude and frequency dependent:

¹ ¹.@

.>
œ Z

o

max
= (A2.32)

If we assume the total gain  distributed as × andE œ "! E œ &!!! "
&

E œ #!! G œ ### ×, the value of the compensation capacitance pF, and the availablec

maximum differential current µA, the output slew rate limit will be a3 œ #!!!

generous 9V µs. In contrast, an ordinary RIAA amplifier does not have to put outÎ
more than 3.5V  (+20 dBm) at 20 kHz, which is equivalent to 0.44V µs.peak Î

Clearly, in normal operation an RIAA amplifier will never get near the limit, but

for the slowest of classical operational amplifiers, like the µA741 (0.5V µs).Î

Also, in contrast to amplifiers with purely resistive feedback, the RIAA

equalization amplifier of  will have a feedback factor high and nearly constantFig.4

with frequency, as illustrated in , up to the highest frequencies of interest,Fig.A2.5

because of the gain falling with frequency.
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Fig.A2.5: Because of the frequency dependent feedback the RIAA equalization amplifier

has a feedback factor  high and changing very little with frequency (in contrast to anE"
amplifier with purely resistive feedback, , where the feedback factor is falling atFig.A2.3

a rate of dB decade, becoming only  at the system cut off frequency ).#! Î 0È# h

Because the system linearity is governed by the amount of feedback, having

more feedback at higher frequencies means lower distortion. Of course, other

distortion mechanisms may (in suboptimal designs) spoil the performance, but having

enough feedback is always beneficial.
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Audiophiles still often engage in endless discussions on why and how does

feedback reduce distortion. Why is feedback more effective for low frequencies, why it

seems to be more effective with certain distortion mechanisms and less with others,

what are its limitations, and how does it sometimes make the problem worse.

The short answer is that an amplifier with a closed loop feedback amplifies any

externally generated signals, but reduces any internally generated signal. Signals within

the feedback loop, be it intentionally introduced signals, or a consequence of transfer

function nonlinearity, or noise, are being all reduced by the feedback factor, that is

what remains of the open loop gain when we take away the closed loop gain. But this

is only a general rule of thumb, and to see how exactly the system behaves in some

particular cases we need to do some modeling and model analysis.

A simplified amplifier distortion mechanism model is shown in . AnFig.A2.6

ordinary amplifier is usually composed of an input differential voltage gain stage ,E
followed by a unity gain power buffer stage, with the negative feedback loop closed by

the resistive divider having an attenuation of . Most of the distortion is usually"
generated by the output buffer in various forms: crossover distortion, current gain

nonlinearity, gain difference between the output transistor pair, etc. All these

mechanisms can be included in the model by adding a summing stage , where someD
arbitrary distortion signal  is summed with the signal  from a distortionless voltage@ @d a

amplifier, and that sum appears as  from a distortionless output stage.@o

A
Σ +1s

p

n

a

d

o

Rg

Rf

= ——— 
Rg

Rf Rg+

Fig.A2.6: Simplified amplifier distortion model: a distortionless differential input

stage with the gain  drives a distortionless summing stage , followed by aE D
distortionless unity gain buffer ( 1). A resistive divider closes the feedback loop,
dividing the output signal by . Any internal nonlinearity and noise is modeled by a"
generator producing the distortion signal .@d

In this way the distortion as part of the output signal returns to the input by the

feedback loop attenuated by , and then amplified by  (phase inverted!), where it" E
becomes part of the amplified signal , which is again summed by the distortion signal@a
@d, and so forth. In this way the distortion signal is being cumulatively reduced by the
feedback loop factor . Following the input  signal path in a b a b"  E @ œ @" p s Fig.A2.6

we can write for the differential voltage gain stage:

@ œ E @  @a s na b (A2.33)

and for the output voltage:

@ œ @  @o a d (A2.34)

The feedback attenuates the output voltage to  which closes the loop:@n
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@ œ @n o" (A2.35)

By inserting (A2.35) into (A2.33) we have:

@ œ E @  @a s oa b" (A2.36)

and taking this result into (A2.34) we have:

@ œ E @  @  @o s o da b" (A2.37)

This we solve for , first by multiplying each part in the parentheses by :@ Eo

@ œ E@  E @  @o s o d" (A2.38)

then transporting the factors containing  on the left hand side:@o

@  E @ œ E@  @o o s d" (A2.39)

and extracting the common  factor:@o

@ "  E œ E@  @o s da b" (A2.40)

and finally by dividing all by the feedback factor :a b"  E"

@ œ @  @
E "

"  E "  E
o s d

" "
(A2.41)

We can now rewrite the term multiplying the input signal  in the following way:@s

E E "

"  E "  E
œ †

" " "

"
(A2.42)

By making  very high the term . This can be thought of as a smallE E Î "  E Ä "" "a b
error term ( ) of the closed loop gain . So in the end we have the signal "  "Î @& " s

amplified by the closed loop gain 1  (set by the resistor ratio), and in addition theÎ"
distortion signal which is reduced by a factor :a b"  E"

@ œ @  @
" "

"  E
o s d

" "
(A2.43)

or explicitly:

@ œ @  @
V  V

V

"

"  E
V

V V

o s d
f g

g g

f g

(A2.44)

For example, by making 9  and , the closed loop signal gain will beV œ V E œ "!f g
5

very close to ×, and the distortion will be reduced by as much as ."! "!%

Of course, the trouble is that  is not constant, but decreases with frequency,E
as we have seen before. So instead of just maximizing  it is often a better idea toE
increase the frequency of the dominant pole from the usual 10–100Hz to 1 kHz, or

higher if possible; this then provides more loop gain at high frequencies and allows the

amplifier to react faster to any error. Of course, in RIAA correction the gain decreases

with frequency too, leaving more loop gain for correction. As seen in , at 1 kHFig.A2.5

the loop gain can be about 500× and at 10 kHz still about 100×.
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Appendix 3: A Discussion on Input jFETs

The book “Designing with Field effect Transistors” is a classical reference,

published in 1981, written by the application staff of Siliconix, Inc., and edited by one

of the corporation founders and the application department leader Arthur D. Evans,

[ ]. The following analysis is not a substitute for it, or any other book; I only present9

some of the important points in a didactic way for a quick reader’s insight.

As a general rule, at the amplifier’s input a bipolar junction transistor (BJT)

differential pair will be preferred for low impedance signal sources, and a junction field

effect transistor (jFET) differential pair will be preferred for high impedance signal

sources. The dominantly inductive (within the audio band) nature of a phonograph

cartridge means that there is a low impedance at low frequencies and a high impedance

at high frequencies. Since this impedance starts to increase from about 1 kHz, and the

noise power also increases with frequency, and the human ear is most sensitive in the

range between 2–5 kHz, the system noise should be made low within this region.

Another reason for choosing jFETs at the input is that their performance with

respect to noise becomes better at higher drain current, which also makes it easier to

obtain a higher gain, higher bandwidth, and higher slew rate limit, thus also a lower

intermodulation distortion. In addition their larger  (compared to 26mVZ 5 XÎ; ¸gs B

of a BJT) means larger signal handling, better linearity, and a more gradual saturation.

In contrast, BJTs have usually their optimal noise performance at a relatively small

collector current, compromising mostly the slew rate.

On the negative side, matching of a JFET pair is usually worse than for BJTs,

meaning a much higher DC offset. And because of their high quiescent current

(desirable for noise) a lower drain resistance is necessary for adapting to the following

amplifier stage, which means a somewhat lower system gain than with BJTs.

Another point of concern might be the influence of the parasitic gate-drain

capacitance , mainly at frequencies in the upper audio band, because of the highGgd
source impedance. Also,  varies nonlinearly with the signal, causing largerGgd
intermodulation distortion at higher frequencies. This can be most problematic when

the total system gain is inadequately low, since it falls with frequency anyway.

But let us look at the equations relating the most important jFET parameters.

We start from the ‘static’ transfer function, the drain current as a function of the gate-

source voltage, , shown in . An N-channel jFET is biased in a wayM Zd gsa b Fig.A3.1

similar to a thermionic triode, a positive drain voltage , and a negative gate voltageZdd
Zgs (obviously, for P-channel jFETs the voltage and current polarities change).

The gate is in the form of a reverse biased diode with the channel, and the

resulting field modulates the effective channel width, and consequently the current

through the channel. Like in a thermionic triode, the current through the device, ,Md
has a maximal value, , when , and  when , the so calledM Z œ ! M œ ! Z œ Zdss gs d gs p

pinch-off voltage (the gate voltage which causes a field strong enough to deplete the

channel of charge carriers, so there can be no current; in manufacturing datasheet  isZp
ordinarily labeled as ; in literature a  label can often be found, meaning aZ Zgsoff T

conducting threshold voltage).
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However, unlike a triode, the modulation of the channel width also changes the

parasitic gate-drain capacitance  and this change is nonlinear, so that will haveGgd
some unwanted effects, which will be discussed a little later.

The similarity with a thermionic triode extends also to the transfer function

law: The drain current varies in an exponential manner with the gate-source voltage,

which can be written as:

M œ M " 
Z

Z
d dss

gs

p
Œ 8

(A3.1)

The exponent can be experimentally found to be 2, so the law is approximately8 ¸
quadratic. In our analysis we shall assume for simplicity an exact quadratic function,

but the results would not be very different with an actual value.
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Fig.A3.1: The jFET drain current as a function of gate-source voltage is

approximately quadratic. The dynamic small transconductance is bias

dependent and is greater at lower gate voltage and higher drain current.

We are interested in the small signal gain of a jFET, and therefore we need a

derivative of the function (A3.1) at some particular DC bias setting (‘working point’).

The common source forward transconductance gsf  is found by first choosing some DC

Z Mgs d resulting in some DC , and we introduce a small AC signal about that DC level,

with the amplitude , and consequently . To maximize the@ œ Z @ œ V Min gs out d d? ?

dynamic range of this simple amplifier we set the value of  such that .V V M œ Z Î#d d d dd

@

V

@
œ

out

d

in

gsf
d

gs
,

œ
M

Z

?

? »
Z Mgs d

(A3.2)
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We need to separate the DC and AC variables. To make this easier we shall

rewrite equation (A3.1) as:

M œ Z  Z œ Z  #Z Z  Z
M M

Z Z
d p gs p gs

dss dss

p p
p gs# #

# # #a b ˆ ‰ (A3.3)

and further:

M œ M  # Z  Z
M M

Z Z
d dss gs

dss dss

p p
gs#
# (A3.4)

As we make the current difference and the voltage difference infinitesimally small, we

are accustomed to write the derivative as  instead of the (difference) . With. ?
differentiation we eliminate the DC term, with a constant and a linear term remaining:

gsf
d dss

gs p

œ œ !  #  #
.M M

.Z Z

M

Z
Z

dss

p
gs#

(A3.5)

Note that when , then , and g g , which means that the maximalZ œ ! M œ M œgs d dss sf sf!

transconductance achievable for a jFET is given by that constant term in (A3.5):

gsf
dss

p
! œ  #

M

Z
(A3.6)

and this figure is often stated by the manufacturer in the device’s data. FETs tend to

have large tolerances for , say a nominal 2V value can vary from 0.5V to 6VZ   p

in an actual device, with corresponding variations of , so  usually gives a moreMdss sfg !

reliable performance estimation. Note also that the remaining  term in (A3.5) is theZgs
DC bias value, and since the term has a sign opposite to the , it shows how the g gsf sf!

is reduced by making  larger. The negative value of  means that the output signalZgs sfg

is inverted with respect to the input signal.

By combining (A3.5) and (A3.6) we can write:

g gsf sfœ " !Œ Z

Z
gs

p

(A3.7)

or alternatively:

g gsf sfœ !Ê M

M
d

dss

(A3.8)

An often neglected aspect of jFET performance is the output conductance:

gos
d

ds

œ
M

Z

?

?
(A3.9)

Because , it is obvious that the signal gain also depends on  andZ œ Z  V Mds dd d d osg

consequently on the supply voltage and the drain resistance:

E œ œ
@ V

@ "  V
o d

g os d
sfg

g
(A3.10)

so only if  can the signal gain be approximated as .g gos d sf d¥ "ÎV E ¸ V



 Ironing RIAA E.Margan 

—57—

This condition requires a suitably high supply voltage , so that the outputZdd
signal variation  can be relatively small in comparison with .@ œ M V Zo d d dd?
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Fig.A3.2: Gain  as a function of , with 12V and 3.3 k .E Z Z œ V œgs dd d H

We must now discuss some dynamic effects. At high frequencies and large

amplitudes the parasitic gate-drain capacitance  becomes particularly important.Ggd
The capacitance per unit area can be expressed as:

G œ
O

Z  Z
Œ 

bi g

5

(A3.11)

Here  represents the ‘built in’ space charge potential, usually about 0.6V, and  isZ Obi

a constant determined by the channel geometry. For an abrupt junction the exponent

5 œ "Î# 5 œ "Î$, and for a linearly graded junction . A typical FET has a grading

coefficient between these values. An acceptable approximation is .5 œ !Þ%

A similar relation is valid for the gate-source capacitance . Because of theGgs
lower voltage across it (only ),  is typically much larger than , and it alsoZ G Ggs gs gd

varies more with the gate voltage. However, the variation of  will often beGgd
dominant because of the Miller effect, which was already discussed in .Appendix 2

To make the analysis a bit easier for the purpose of acquiring a feeling of what

is going on, let us assume that the signal generator impedance is purely resistive, say

V œ %!G k . Then the gate input capacitance will form a low pass filter for the signal,H
with a transfer function magnitude:

º º É a b
@

@
œ

"

"  # 0 G V

g

G
in G1 #

(A3.12)

where  is the signal generator voltage,  is the jFET gate voltage, and  is:@ @ GG g in

G œ G  G "  Ein gs gda b (A3.13)
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and here we have accounted for the Miller effect caused by the voltage gain . C  andE gs

G Z Zgd gs gd are functions of  and , so we need to determine the bias condition and gain

E G Z. In general a junction capacitance  varies with the junction voltage :j j

G œ G
"

" 
Z

Z

j

j

bi

! 5Œ 
(A3.14)

Here  represents a measured nominal capacitance for a specific bias, as given in theG!

manufacturer’s data sheet. With  known for a certain bias, we can determine  forG Gj j" #

a different bias as:

G œ G
Z  Z

Z  Z
j j

bi j

bi j
# "

"

#

5Œ  (A3.15)

We can determine the required  from (A3.1), here assuming :Z 8 œ #gs

Z œ Z " 
M

M
gs p

d

dss
Œ Ê (A3.16)

Then  is determined by (A3.10), and we can see that :E Z œ Zj gd

Z œ Z  V M  Zgd dd d d g (A3.17)

where  is the gate to ground potential, which in the case of a grounded source isZg
equal to .Zgs

For example, as shown in , the LSK389 data specify the inputFig.A3.3

capacitance as pF, and the reverse transfer capacitance pF. NoteG œ #& G œ &iss rss

that those values are somewhat larger than  and , respectively, but the ratio isG Ggs gd

similar. However, at a bias of 150mV and 1.8mA the gain will be aboutZ œ M œgs d

E œ G E  " G30×, and the effective input capacitance owed to  becomes , orgd gda b
about 35 pF. Of course, the variation of the capacitance with the signal is amplified by

the same gain factor.

Let us see what impact will that have on a sine wave of 5 kHz. The input signal

amplitude (at nominal 5 cm s modulation) will be 17mV , so the  bias of 150Î Z peak gs

mV is being varied by ±11%, which in turn modulates the total input capacitance by a

few %. With the signal source impedance of our typical average cartridge, this will

introduce a distortion of a few %, mostly of 2  harmonic.  shows the inputnd Fig.A3.4

and output signal and their normalized difference. The signal gain is about 30×.

Note however that this analysis is valid for a single jFET amplifier. But based

on this some amplifier designers conclude that a similar distortion mechanism is

present in differential amplifiers as well. Of course, the differential signal level is

reduced by feedback by s few orders of magnitude, but in noninverting amplifiers the

full signal amplitude is present in the form of a common mode signal, with equally

devastating effects. The question is: how much truth is there is those claims? And if

that is not so, why?

First thing to note is that in a differential jFET pair the source of one device is

loaded by the source of the other, acting in a complementary manner for the
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differential signal. This means that the nonlinearity effect of  is greatly reduced,Ggs
even in case of a mismatch between the two devices.
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Fig.A3.3: Input capacitance of a typical low-capacitance jFET is the sum of the gate-

source capacitance  and the Miller capacitance . The capacitances varyG G "  Egs gda b
nonlinearly with the signal. The Miller effect makes the largest capacitance variation.
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Fig.A3.4: Distortion of a 5 kHz signal for a single jFET amplifier; see text for details.

Next,  is also being modulated in a complementary manner, but theGgd
feedback impedance in an RIAA equalizer is always very low, whilst the input

impedance varies widely. However, the cable connecting the cartridge to the amplifier

will usually have 100 pF m, with some additional capacitance in parallel, necessary forÎ
the correct inductance compensation, and both appear in parallel with the amplifier

input capacitance, so the variations of the input capacitance represent a much smaller

fraction of the total.
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As the differential signal is reduced by feedback, so is the nonlinearity of the

gain transfer function and of the effective input capacitance. This means that more

feedback in a loop is a desirable factor, as long as the bandwidth is correctly taken care

of, and any secondary poles of the amplifier are kept below the unity gain level, thus

the amplifier stability is not compromised.

What about the common mode signal? It is being reduced by the symmetry of

the differential pair, but this can be also affected by the impedance of the current

source which supplies the bias current to the pair. If the impedance of the current

source is not high enough, the sources of the differential pair do not share the same

current, some of the current is lost mainly through the drain capacitance and the real

conductance of the current source. With spoiled symmetry, part of the common mode

signal becomes a differential mode signal, causing trouble.

A simple way of greatly increasing the impedance of the current source is to

use the ‘cascode’ configuration. The name stems from the valve tube epoch circuits inÎ
which the anode of the first device was connected to the cathode of the second,

forming a ‘cascade to cathode’. The configuration using semiconducting devices is

similar, but different types require different bias method. The configuration using

jFETs is particularly simple, , because of the similarity of the gate voltageFig.A3.5

polarity with thermionic devices.
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Fig.A3.5: A jFET cascode connection and its capacitances. Because the voltage on

U Z" is equal to  and changes very little, the effective input capacitances alsogs2

changes very little. The Miller effect is greatly reduced by the low impedance of U#

source loading the drain of , making the  gain , so .U U ¸ " G ¸ #G" " "m gd

The cascode connection has high linearity in the saturation region, also for very

large signals. The Miller effect is greatly reduced because the drain of  is loaded byU"

the source of , making its gain , so the effective Miller capacitance is onlyU E ¸ "#

G œ #G Um gd, and linearity is improved because the drain voltage of  varies little."

Therefore bandwidth and linearity are extended to high frequencies and high signal

levels. Also the leakage current to the gate of  is greatly reduced, because its  isU Z" dg

small, lower than the  of .Z Ugs #
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We are not going to deal with the cascode amplifier in full length, but only

show how the gain depends on the gain of individual stages. The gain of  (whichU"

acts as a common source stage) can be written as:

E œ œ 
@ < <

@ <  <
@" "

" " =#

" " =#

d d

g d
mg (A3.18)

and the gain of  (which acts as a common gate stage) can be approximated as:U#

E œ ¸ 
@ < V

@ <  V
@# #

# #

# #

d d d

s d d
mg (A3.19)

where  is the drain resistance of . Two things become important here: first, V U Ud # #

reduces the loading of the drain of  by :U <" # #gm d

< œ
<  V

"  <
s

d d

m d
#

#

# #g
(A3.20)

and second, the system gain is the product of the gains of each stage:

E œ œ E E œ
@ < < < V

@ <  < <  V
@ @ @# " #

# " =# #

" " =# #

d d d d

g d d d
m m"
g g (A3.21)

which by inserting () into () becomes:

E œ V
< <

< "  <  <  V
@ " #

" #

" # # #
g g

g
m m d

d d

d m d d da b (A3.22)

Note that because the denominator is much greater than the numerator, the effective

gain of a cascode stage is similar to that of a single common source stage, but its

dependence on internal resistance variability is greatly reduced. Therefore it makes

sense to employ the cascode also for the differential pair itself, as in , since suchFig.27

a simple circuit addition solves many problems.
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Fig.A3.6: A computer simulation, using model parameters of the SK170 jFET,

compares the distortion of a jFET single-ended and differential cascode circuit. Note

that the signal voltage  is not drawn to scale. The single-ended cascode has some@in
5% distortion, dominantly 2  harmonic, whilst the differential cascode has onlynd

0.5%, but dominantly 3  harmonic, both at 0.4V peak output at 2 kHz. The looprd

gain of an ordinaary opamp will reduce this by at least 500×.
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Appendix 4: The Third Order 10 Hz High Pass Filter

R14
C11 C13

R13

C12 A

f

o

R11

R12

1

2

3

Fig.A4.1: Third order high pass filter of the Sallen–Key configuration

From the theory of active filters, in particular the Sallen–Key circuit topology

we know that the component values spread and the system’s response sensitivity to

component variations is minimized by making all the serial components (capacitors in

this case) equal: .G œ G œ G œ G"" "# "$

We have already derived the transfer function from (64) to (71):

@ =

@
œ

=  =   =  
" $ " # " " "

G V V G V V V V G V V V

f

o

$

$ #

"$ "" "# "$ "" "$ "" "# "$
# $Œ  Œ 

If we compare this with the general third order highpass form :

 œ E œJÐ=Ñ
=

=  = =  = =  =
!

$

" #a ba ba b3
 (A4.1)œ E

=

=  = =  =  =  = = =  = =  = =  = = =
!

$

$ #
" # " # " # " #a b a b3 3 3 3

we note that the gain , whilst the system cut off frequency is obtained fromE œ "!

=!
$ $

" # $ "" "# "$œ = = = œ "ÎG V V V . Still, we have four component values to define,

but only three polynomial coefficients. But we can normalize the values by making

G œ ", obtain the resistor ratios from the polynomial coefficients, and then
denormalize the  products for the required cut off frequency.GV

Anyway, the pole values are also given in normalized form to rad s,=! œ " Î
either by tables for systems of different order, or by numerical algorithms to compute

the values. The algorithm for Bessel poles is quite complicated, but the algorithm for

polynomial coefficients is relatively simple. Bessel polynomials follow these rules:

 œ "F =!a b
 œ =  "F ="a b
 (A4.2)œ #8  " F =  = F =F =8 8" 8#

#a b a b a b a b
The coefficients  of the resulting polynomial of order  can be calculated as:- 85

 (A4.3)
  

œ-
#8  5 x

# 5x 8  5 x
5 85

5œ! " # á 8" 8

a ba b ºa b
, , , , ,
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For the third order ( ) Bessel system the polynomial coefficients are:8 œ $

5 œ $ Ê œ œ œ œ œ "- (A4.4)$
#†$$ x

# $x $$ x
$x $†#†" '

# $x !x "†$†#†" '
a ba b      a b$$ !

5 œ # Ê œ œ œ œ œ '- (A4.5)#
#†$# x

# #x $# x
%x %†$†#†" #%

# #x "x #†#†" %
a ba b    a b$# "

5 œ " Ê œ œ œ œ œ "&- (A4.6)"
#†$" x

# "x $" x
&x "#! "#!

# "x #x %†"†# )
a ba b      a b$" #

5 œ ! Ê œ œ œ œ œ "&- (A4.7)!
#†$! x

# !x $! x
'x '†&†%†$†#†" (#!

# !x $x )†"†' %)
a ba b      a b$! $

The denominator of the transfer function will then be the following polynomial:

 (A4.8)œ - =  - =  - =  - = œ =  '=  "&=  "&- ="
5œ$

!

5 $ # " !
5 $ # " ! $ #

The poles for this polynomial are:

 œ "Þ!%(%  4!Þ***$=$

 œ "Þ!%(%  4!Þ***$=#

 œ "Þ$##(="

As stated in the main text, these are the poles for a low pass system, and for a high

pass system we need to invert the poles, . So the values to be used are:"Î=i

 œ œ !Þ%**)  4*Þ%(')=$
"

"Þ!%(%4!Þ***$

 œ œ !Þ%**)  4*Þ%(')=#
"

"Þ!%(%4!Þ***$

 (A4.9)œ œ !Þ(&'!="
"

"Þ$##(

Now we can solve the following set of equations:

 (A4.10)œ =  =  =
$ "

V V
" #

"" "$
3

 (A4.11)œ # = =  = =  = =
" "

V V V V
" # " #

"" "# "" "$
3 3 Œ 

 (A4.12)œ= = =
"

V V V
" #

"" "# "$
3

To shorten the expressions and reduce the possibility of transcription errors we set:

 (A4.13)œ =  =  =B " # 3

 (A4.14)œ = =  = =  = =C " # " #3 3

 (A4.15)œ = = =D " # 3

And for simplicity we also reassign:

 (A4.16)œ VV" ""

 (A4.17)œ VV# "#

 (A4.18)œ VV$ "$
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Then, from (A4.11) and (A4.14) we have:

C œ 
# " "

V V V" # $
Œ  (A4.19)

V œ 
# " "

C V V
"

# $
Œ  (C.20)

From (A4.12) and (A4.15):

D œ
"

# " "

C V V
 V VŒ 

# $
# $

(A4.21)

D œ
C

# V  Va b# $
(A4.22)

V V œ
C

#D
# $ (A4.23)

V œ V
C

#D
# $ (A4.24)

From (A4.10) and (A4.13):

B œ 
$ "

# " "

C V V


VŒ 
# $

$
(A4.25)

B œ 
$ "

# " "
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 V



VÎ ÑÐ Ó
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$
(A4.26)

B œ 
$C "

# 
#D "

C  #DV V

VŒ 
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$
(C.27)

B œ 
$C "

#
#DV  C  #DV

C  #DV V

V” •a b$ $

$ $

$
(A4.28)

B œ 
$C "

#
C

C  #DV V
Va b$ $

$
(A4.29)
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B œ 
$ C  #DV V "

# V

a b$ $

$
(A4.30)

B œ CV  $DV 
$ "

# V
$ $

#

$
(A4.31)

BV œ CV  $DV  "
$

#
$ $ $

# $ (A4.32)

$DV  CV  BV  " œ !
$

#$ $
$ #

$ (A4.33)

V  V  V  œ !
C B "

#D $D $D$ $
$ #

$ (A4.34)

We have now a third order equation for . To simplify it further, we can substitute:V$

 (A4.35)œ :
C

#D

 (A4.36)œ;
B

$D

 (A4.37)œ <
"

$D

The equation (A4.34) becomes:

V V :  V ;  < œ !$ $
$ #

$ (A4.38)

We solve this for  by using a general form solution for the third order equation:V$

V œ  :  $; 
# " $ :  $; $;  : #:  *:;  #(< :

$ $ $* %<:  : ;  "):;<  %;  #(<
$

#
# # $$Î# $Î#

$ # # $ #
È – —È a b a b a bÈsin arctan

(A4.39)

Note that there are also two complex-conjugate solutions for , but only theV$

real value solution is needed. From a known  we can then find:V$

V œ V
= =  = =  = =

#= = =
# $

" # " #

" # $

3 3
(A4.40)

V œ
"

V V = = =
"

# $ " # $
(A4.41)

We can now find  from a given 3 dB bandwidth limit :G  œ = = ==0 È3 " # $

=! $
" # $

œ
G V V V

1
(A4.42)È3

G œ
V V V

1
(A4.43)

=! " # $È3
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For Butterworth poles the procedure is identical, except that we start from the

values for a Butterworth 3 -order system:rd

 œ !Þ&!!!  4!Þ)''!=$

 œ !Þ&!!!  4!Þ)''!=#

 (A4.44)œ "Þ!!!!="

and we do not need to invert those, because those poles are on the unit circle (as for

the whole Butterworth family), so the inverted values are the same.
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Appendix 5: Matlab Code Used for the RIAA Amplifier Design

% RIAA optimization
% NOTE: the figure numbers are not the same as in the text!

% frequency vectors (100 samples/decade)
f=logspace(0,6,601);
s=j*2*pi*f;
% discrete frequencies
fp=[1,4,10,20,50,500,1000,2122,20000,50000,400000];
sp=j*2*pi*fp;
% 1kHz
f1k=1000;
s1k=j*2*pi*f1k; % == s(301)
% 50kHz
f50k=50000;
s50k=j*2*pi*f50k;

% time constants definitions:
T1=3183e-6;  % [s] .... f1=50Hz
T2=318.3e-6; % [s] .... f2=500Hz
T3=75e-6;    % [s] .... f3=2122Hz
T4=3.183e-6; % [s] .... f4=50kHz
T5=0.4e-6;   % [s] .... f5=400kHz

% Inverse functions
% nominal DC attenuation for all inverse functions:
ax=T2*T4/(T1*T3);
% 3 time constants:
Fi3=ax*(s*T1-1).*(s*T3-1)./(s*T2-1);
% 4 time constants:
Fi4=ax*(s*T1-1).*(s*T3-1)./((s*T2-1).*(s*T4-1));
% 5 time constants:
Fi5=ax*(s*T1-1).*(s*T3-1)./((s*T2-1).*(s*T4-1).*(s*T5-1));
% Magnitudes:
Mi3=20*log10(abs(Fi3));
Mi4=20*log10(abs(Fi4));
Mi5=20*log10(abs(Fi5));

% reference value at 1kHz for normalization:
% Fi41k=(s1k*T1-1).*(s1k*T3-1)./((s1k*T2-1).*(s1k*T4-1));
% Mi41k=20*log10(abs(Fi41k));
figure(1)
semilogx(f,Mi4, ,'-r' ...
         f,Mi5, )'-m'
title( )'Input - inverting RIAA'
xlabel( )'f [Hz]'
ylabel( ')'Attenuation [dB]
grid

% RIAA equalizer reference values:
% for T3=75e-6;
R2=7500;
C2=1e-8;
% Theoretical (no T4):
% R1=R2*(T1-T2)/(T2-T3); --> result too low!
% artificial correction with T4:
R1=R2*(1+T4/T3)*(T1-T2)/(T2-T3);
C1=T1/R1;
% feedback impedance
Zfb=1 ./(1/R1+s*C1) + 1 ./(1/R2+s*C2);
% at 1kHz:
Zfb1k=1 ./(1/R1+s1k*C1) + 1 ./(1/R2+s1k*C2);
% at 50kHz:
Zfb50k=1 ./(1/R1+s50k*C1) + 1 ./(1/R2+s50k*C2);
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% nominal attenuation at DC:
a_dc=T1*T3/(T2*T4);
% calculate total R34=R4+R3:
R34=(R1+R2)/(a_dc-1);
disp([ , num2str(R34), ])'--> R34 = ' ' Ohm'
% nominal gain requirement
% output level: -10dBm (0.1mW at 600 Ohm)
% input level: 5mV rms @ 5cm/s modulation velocity @ 1kHz
Ar1k=sqrt(1e-4*600)/5e-3;
R3=abs(Zfb1k+R34)/Ar1k;
R4=R34-R3;
disp( )'------------------------------'
disp([ , num2str(R2*1e-3), ])'--> R2 = ' ' kOhm'
disp([ , num2str(C2*1e+9), ])'--> C2 = ' ' nF'
disp([ , num2str(R1*1e-3), ])'--> R1 = ' ' kOhm'
disp([ , num2str(C1*1e+9), ])'--> C1 = ' ' nF'
disp([ , num2str(R4), ])'--> R4 = ' ' Ohm'
disp([ , num2str(R3), ])'--> R3 = ' ' Ohm'
disp( )'------------------------------'

% 50kHz output low pass filter 1st-order:
Rf1=2120;
Cf1=1.5e-9;
Tf1=Cf1*Rf1;
% complex frequency response:
J1=1 ./(s*Tf1+1);
% magnitude:
Mj1=20*log10(abs(J1));

% 50kHz Butterworth low pass filter 2nd-order:
% normalized poles:
p2=(sqrt(2)/2)*[-1-j;-1+j];
% actual poles for 50kHz bandwidth:
p2=p2*2*pi*5e+4;
% complex frequency response:
J2=prod(-p2) ./((s-p2(1)).*(s-p2(2)));
% magnitude:
Mj2=20*log10(abs(J2));

% combined effect of J1 and J2:
J3=J1.*J2;
Mj3=20*log10(abs(J3));

% equalizer gain
Gr1 = 1 + R4/R3 + Zfb/R3;
Mgr1=20*log10(abs(Gr1));
% with LPF J1:
Gr2 = Gr1 .* J1;
Mgr2=20*log10(abs(Gr2));
% equalizer driving with Fi4:
% normalization to 1kHz:
Fi4n=Fi4/Fi4(301);
Mfi4n=20*log10(abs(Fi4n));
FGr1=Fi4n.*Gr1;
FGr2=Fi4n.*Gr2;
Mfgr1=20*log10(abs(FGr1));
Mfgr2=20*log10(abs(FGr2));

figure(2)
semilogx(f,Mgr2,            ,'--b' ...
         f,Mgr1,            ,'-b' ...
         f,Mfi4n+Mgr1(301), ,'-m' ...
         f,Mfgr1,           ,'-r' ...
         f,Mfgr2,           ,'-c' ...
         f,Mj1+Mgr1(301),   ,'-k' ...
         f,Mj2+Mgr1(301),   ,'-g' ...
         f,Mj3+Mgr1(301),   ,'-g' ...
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         f,Mj3+Mgr1(301),   )'--k'
axis([min(f), max(f), 0, 65]);
title( )'Amplifier - RIAA Equalizer'
xlabel( )'f [Hz]'
ylabel( )'20*log10(Vo/Vi) [dB]'
grid

Fc1=(Fi4/Fi4(301)).*Gr1; % Fi re 1kHz
Fc2=(Fi5/Fi5(301)).*Gr1; % Fi re 1kHz
Fc3=(Fi4/Fi4(301)).*Gr2; % Fi re 1kHz
Fc4=(Fi5/Fi5(301)).*Gr2; % Fi re 1kHz
Mc1=20*log10(abs(Fc1));
Mc2=20*log10(abs(Fc2));
Mc3=20*log10(abs(Fc3));
Mc4=20*log10(abs(Fc4));

figure(3)
semilogx(f,Mc1, ,'-r' ...
         f,Mc2, ,'-m' ...
         f,Mc3, ,'-g' ...
         f,Mc4, )'-b'
title( )'Input, Compensation, and Resulting Output'
xlabel( )'f [Hz]'
ylabel( )'20*log10(Vo/Vi) [dB]'
grid

put=4;
% Pickup Z
% ---------------------
if (put==1)
    % Stanton ST500E MkII
    Lp=0.400;     % [H]
    Rp=635;       % [Ohm]
    Rbn=47e+3;    % [Ohm]
    Cbn=100e-12;  % [F]
    Rbo=47e+3;    % [Ohm]
    Cbo=250e-12;  % [F]
elseif(put==2)
    % Sonus Blue Label
    Lp=0.150;     % [H]
    Rp=300;       % [Ohm]
    Rbn=47e+3;    % [Ohm]
    Cbn=200e-12;  % [F]
    Rbo=47e+3;    % [Ohm]
    Cbo=39e-12;   % [F]
elseif(put==3)
    % General Average
    Lp=0.300;     % [H]
    Rp=600;       % [Ohm]
    Rbn=47e+3;    % [Ohm]
    Cbn=120e-12;  % [F]
    Rbo=47e+3;    % [Ohm]
    Cbo=90e-12;   % [F]
else
    % Grado Prestige Silver
    Lp=0.045;     % [H]
    Rp=475;       % [Ohm]
    Rbn=47e+3;    % [Ohm]
    Cbn=250e-12;  % [F]
    Rbo=27e+3;    % [Ohm]
    Cbo=120e-12;  % [F]
end

% amp input impedance - nominal cartrdige load
Zin=1 ./(1/Rbn + s*Cbn);
% with optimized load
Zio=1 ./(1/Rbo + s*Cbo);
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% cartridge + load transfer function
Hpun=Zin./(Rp+s*Lp+Zin);
Hpuo=Zio./(Rp+s*Lp+Zio);
Mpun=20*log10(abs(Hpun));
Mpuo=20*log10(abs(Hpuo));

figure(4)
semilogx(f,Mpun, ,'-g' ...
         f,Mpuo, )'-b'
axis([min(f), max(f),-4,1]);
title( )'Pickup with Loading'
xlabel( )'f [Hz]'
ylabel( )'Vpu [dB]'
text(30,-0.8,[ , num2str(Lp*1000), ])' Lp = ' ' mH'
text(30,-1.3,[ , num2str(Rp), ])' Rp = ' ' Ohm'
text(30,-1.8,[ , num2str(Rbn/1000), ])'Rbn = ' ' kOhm'
text(30,-2.3,[ , num2str(Cbn*1e+12), ])'Cbn = ' ' pF'
text(30,-2.8,[ , num2str(Rbo/1000), ])'Rbo = ' ' kOhm'
text(30,-3.3,[ , num2str(Cbo*1e+12), ])'Cbo = ' ' pF'
grid

Fcxn=Fc4.*Hpun;
Fcxo=Fc4.*Hpuo;
Mcxn=20*log10(abs(Fcxn));
Mcxo=20*log10(abs(Fcxo));

figure(5)
semilogx(f,Mc4,            ,'-m' ...
         f,Mpun+Mgr1(301), ,'-g' ...
         f,Mpuo+Mgr1(301), ,'-m' ...
         f,Mpuo+Mgr1(301), ,'--g' ...
         f,Mcxn,           ,'-k' ...
         f,Mcxo,           ,'-m' ...
         f,Mcxo,           )'--k'
axis([min(f), max(f), 30, 35]);
title( )'Output, pickup, and combined response'
xlabel( )'f [Hz]'
ylabel( )'Vout, Vpu*Vout [dB]'
grid

% DC integrator, HPF 1Hz
Rint=47000;
Cint=3.3e-6;
wint=1/(Cint*Rint);
K1=s ./(s-wint);
Mk1=20*log10(abs(K1));
% HighPass Filter 3rd order
% Bessel Low-Pass, normalized to 1Hz
[z,p3]=bestap(3,'n');
% inversion for High-Pass, 1Hz
p3=1 ./p3;
% for 10Hz:
p3=p3*2*pi*10;
% High-Pass Response:
K3=s.^3 ./((s-p3(1)).*(s-p3(2)).*(s-p3(3)));
Mk3=20*log10(abs(K3));
% Butterworth, 10Hz
[z,q3]=buttapx(3);
q3=q3*2*pi*10;
K3u=s.^3 ./((s-q3(1)).*(s-q3(2)).*(s-q3(3)));
Mk3u=20*log10(abs(K3u));

figure(6)
semilogx(f, Mk1,  ,'-r' ...
         f, Mk3u, ,'-g' ...
         f, Mk3,  )'-b'
axis([min(f), max(f), -4, 1]);
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grid
xlabel( )'f [Hz]'
ylabel( )'Attenuation [dB]'
title( )'Compare Bessel and Butterworth HPFs'

% all together now:
X=Fi4n.*Hpuo.*Gr1.*J1.*K1.*K3u;
Mx=20*log10(abs(X));

figure(7)
semilogx(f,Mx, )'-b'
xlabel( )'f [Hz]'
ylabel( )'Gain [dB]'
title( )'full system simulation'
axis([min(f), max(f), -10, +40]);
grid;

% Noise Analysis - equivalent input noise:
% absolute Temperature:
Ta=293; % [K], ==20°C
% Boltzmann constant:
kB = 1.3807e-23; % [VAs/K]

% Pickup impedance
Zpun = 1 ./(1 ./(Rp + s*Lp) + 1/Rbo + s*Cbo);
% Pickup thermal niose voltage spectral density:
enZpu=sqrt(4*kB*Ta*real(Zpun));

% amplifier input noise voltage s.d., manufacturer data:

% [V/sqrt(Hz)] (opamps: NE5534, OP37, OPA656, OPA657, OPA857, LM49880)
% enAmp=4e-9;

% [V/sqrt(Hz)] LSK398 dual jFET dif. pair
enAmp=sqrt(2)*0.9e-9;

% 1/f corner frequency
% fcn=300; % [Hz] - opamps general
% fcn=20; % [Hz] - OPA827
fcn=50; % [Hz] - LSK398
% amp input noise + 1/f noise
Fnamp=(fcn+f)./f;
enAmp=enAmp.*Fnamp;

% amplifier input noise current s.d.
inAmp=2.2e-15; % [A/sqrt(Hz)]
inAmp=inAmp.*Fnamp; % 1/f noise
einAmp=sqrt((inAmp.*abs(Zpun)).^2 + (inAmp*R3).^2);

% feedback network impedance simplified to R3:
Rfbn=sqrt(4*kB*Ta*R3)*ones(size(f));

% total input noise:
% Fntot=sqrt(enZpu.^2 + enAmp.^2 + einAmp.^2 + Rfbn.^2);
% current noise einAmp too smal, neglected
Fntot=sqrt(enZpu.^2 + enAmp.^2 + Rfbn.^2);

% output noise = input noise * RIAA equ gain
Fnout=Fntot.*abs(Gr2.*K3u);

figure(8)
loglog(f,enZpu, ,'-r' ...
       f,enAmp, ,'-m' ...
       f,Rfbn,  ,'-g' ...
       f,Fntot, ,'-b' ...
       f,Fnout, )'-k'
%       f,einAmp,'-g') % neglected
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title( )'Noise Source Voltages S.D. and Total Input Noise S.D.'
xlabel( )'f [Hz]'
ylabel( )'V/sqrt(Hz)'
grid

% output rms noise:
% make the df vector:
df=diff(f);
df=[df(1), df];
% square the voltage and integrate noise power from 20Hz to 20kHz,
% then take the square root:
Vnrms = sqrt(sum(Fnout.^2 .* df));
disp( )'------------'
disp([ , num2str(Vnrms), ])'Vnrms = ' ' Vrms'
snr=0.25/Vnrms;
disp([ , num2str(20*log10(snr)), 'S/N ratio = 20*log10(0.25/Vnrms) = ' '
dB'])
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